
MAT137 - Term 2, Week 10

Problem Set 9 is due tomorrow, 17 March, at 3pm.

Today we will:

Remind ourselves a bit about our discussion at the end of last class.
Talk about power series (more formally this time).
Talk about Taylor polynomials.
Introduce the idea of a Taylor series (if there’s time).
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Discussion from the end of last class

At the end of last class, we spent some time discussing the following
problem.

Suppose you’re a 17th century mathematician (who doesn’t already know
that the answer to this question is ex), and you’re trying to find a function
f that satisfies the following two conditions:

f ′ = f and f (0) = 1.

Immediately we realized that from these conditions we can conclude:

f ′(0) = f (0) = 1, and in general f (n)(0) = 1, for all n ∈ N

Ivan Khatchatourian MAT137 March 16, 2017 2 / 35



Discussion from the end of last class

Since we’re in the 17th century and fancy functions like sines, cosines, and
exponentials haven’t been invented yet, we’re trying to find a polynomial
that works.

Quickly we were able to conclude that if pn is a polynomial with degree n,
in order for it to satisfy the first n + 1 of these conditions:

pn(0) = p′n(0) = p′′n(0) = · · · = p
(n−1)
n (0) = p

(n)
n (0) = 1.

we must have:

pn(x) = 1 + x +
1

2
x2 +

1

3 · 2
x3 + · · ·+ 1

n!
xn.

But, we will always have p
(n+1)
n (0) = 0 6= 1, so this function doesn’t work.
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Discussion from the end of last class

Then we said to ourselves, “Well, what if the polynomial just keeps
going...?”

That led us to try to define a function like this:

f (x) = 1 + x +
1

2
x2 +

1

3 · 2
x3 + · · ·+ 1

n!
xn + · · · .

This doesn’t make sense yet, exactly, but we decided to work with it
anyway. We asked ourselves what happens if we could differentiate this
function “term by term” like we do with an ordinary polynomial.

We did this and concluded that if that makes sense, then f ′(x) = f (x).

So this seems to work! Today we’ll try to figure out whether this even
makes sense.
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Power series

The idea with power series is to use a series to define a function.

We’ve seen two examples of this so far. One is the idea we were just
talking about, where we defined

f (x) = 1 + x +
1

2
x2 +

1

3 · 2
x3 + · · ·+ 1

n!
xn + · · · =

∞∑
n=0

1

n!
xn.

The other example we’ve seen is from the geometric series formula:

1

1− x
=
∞∑
n=0

xn as long as |x | < 1.
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Power series

The first question you should ask is: Why would we do this?

The discussion from last class provides part of the answer.

If these functions end up working like polynomials, then they might
be easy to differentiate (and therefore also easy to integrate).

We can design such a function to have specific properties which
might be useful, like we did when we designed a function to satisfy
the differential equation f ′(x) = f (x).

The geometric series example tells us that we have to be careful though.
A series involving x might only definite a function on a certain domain.

So, we’ll proceed cautiously.
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Definition of power series

Definition

Let {an} be a sequence of real numbers, and let a ∈ R.

A series of the form
∑

an (x − a)n is called a power series.

More specifically, it’s called a power series in (x − a) or a
power series centred at a (for reasons that will become clear later).

The specific case of power series cented at a = 0 will be what we study
most carefully. These power series look like this:∑

anxn.
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Convergence of power series

If you take a power series and substitute in a particular value of x , you get
a “regular” series with no more variables.

Definition

Let c ∈ R. A power series
∑

an(x − a)n is said to converge at c if∑
an(c − a)n converges.

Let S be a set of real numbers. A power series
∑

an(x − a)n is said
to converge on S if it converges at c for every c ∈ S .
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Power series as functions

As we said, the idea here is to define functions with power series. So you
should think about defining a function f via something like:

f (x) =
∞∑
n=0

an (x − a)n.

As our geometric series example shows us, we have to be careful with the
domain of this function. It’s very possible for the series on the right to
converge for some values of x and not for others.

We can say the following, not very useful fact:

The domain of a power series
∑

an (x − a)n is the set of all c ∈ R such
that

∑
an (c − a)n converges.
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Power series as functions

Let’s try to say something more useful.

We’ll state this result for power series centred at 0 first.

Theorem

If the power series
∑

an xn converges at some c 6= 0, then it
converges absolutely for all x such that |x | < |c |.

If
∑

an xn diverges at some d, then it diverges for all x such that
|x | > |d |.
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Power series as functions

We’ll give the proof of the first part. Suppose
∑

ancn converges.

Then by the NCT, we must have that lim
n→∞

ancn = 0.

By definition of sequence convergence, there must be an N such that
|ancn| < 1 for all n > N.

Now let x be any real number such that |x | < |c |. We’d like to show that∑
anxn converges absolutely. We’ll do this with the BCT.

|anxn| = |ancn|
∣∣∣∣xn

cn

∣∣∣∣ < ∣∣∣∣xn

cn

∣∣∣∣ =
∣∣∣x
c

∣∣∣n for all n > N.∑∣∣ x
c

∣∣ is a convergent geometric series since |x | < |c |, so we’re done by
the BCT.
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Intervals of convergence

As a result of the previous theorem, the set of points on which a power
series

∑
anxn converges can only have three forms:

Case 1: The power series converges only when x = 0.

Obviously every series
∑

anxn converges when x = 0.

An example where it converges nowhere else might be
∑

n! xn.
For any x 6= 0, we have that

lim
n→∞

n! xn does not exist by the Big Theorem.
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Intervals of convergence

Case 2: The power series converges absolutely at all real numbers.

We know an example of this already:
∑ xn

n!
.

We can prove this with the ratio test:∣∣∣∣ xn+1

(n + 1)!
· n!

xn

∣∣∣∣ =

∣∣∣∣ x

n + 1

∣∣∣∣ =
1

n + 1
|x | → 0 for all x ∈ R.
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Intervals of convergence

This leaves the more interesting case:

Case 3: There is a positive real number R such that the power series∑
an xn converges absolutely when |x | < R, and diverges when |x | > R.

We will soon see that when |x | = R in this case, many things can happen.
For now let’s ignore that part.
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Radius of convergence

Definition

Associated to every power series
∑

an xn is a radius of convergence.

1 In Case 1 from above, we say the radius of convergence is 0.

2 In Case 2 from above, we say the radius of convergence is ∞.

3 In Case 3 from above, we say the radius of convergence is R.

Ivan Khatchatourian MAT137 March 16, 2017 15 / 35



What about the endpoints?

In Case 3, anything can happen at the endpoints:

1
∑

xn converges on (−1, 1).

2
∑ (−1)n

n xn converges on (−1, 1].

3
∑ 1

n xn converges on [−1, 1).

4
∑ 1

n2
xn converges on [−1, 1].
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What about when a 6= 0?

If your power series is not centred at zero, so it looks like
∑

an (x − a)n

for some a 6= 0, all the same stuff is true if you replace x with x − a.

So a series like this can:

1 Converge only at x = a.

2 Converge absolutely at all real numbers.

3 Converge absolutely when |x − a| < R for some R, and diverge when
|x − a| > R. (And again, any combination of things can happen when
|x − a| = R.)

This shows that the set on which a power series converges must be an
interval centred at a. We call it the interval of convergence.

This is also why we call it a power series centred at a.
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Examples

Let’s try to find the intervals of convergence of some power series.

The usual method here is to use the ratio test to get the radius of
convergence, then analyze the two endpoints separately.

Example:
∑ (−1)n√

n
xn. (Interval of convergence: (−1, 1].)

Example:
∑ 3n

(3n)!
xn. (Interval of convergence: R.)

Example:
∑ 1

n 7n
xn. (Interval of convergence:

[
−1

7 ,
1
7

]
.)

Example:
∑ n7

en
(x − 4)n. (Interval of convergence: (4− e, 4 + e).)
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Differentiation and integration

The idea we explored with our “17th century example” was that power
series are sort of like “infinite degree polynomials”.

Our hope was that we could differentiate (and integrate) them exactly like
they’re polynomials.

For example, wouldn’t it be nice if:

d

dx

( ∞∑
n=1

an xn

)
=
∞∑
n=1

d

dx
(an xn) =

∞∑
n=1

n an xn−1?

Then we could differentiate and integrate these functions very easily.
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Differentiation and integration

The moral of the story is that most of the time we can do this:

Inside the interval of convergence (ie. when |x | < R), you can treat
a power series like a polynomial.

To state this more precisely, there are two parts. If a power series
converges absolutely at x , then

1. If you differentiate a power series term by term, then the resulting series
converges.

2. The resulting series is actually the derivative of the series you started
with.
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Differentiation and integration

Here’s the first part. Again, we’ll only state this for power series centred at
0, but it applies to all power series with the appropriate shift.

Theorem

Let
∑

an xn be a power series with radius of convergence R (which could
be ∞).

1. The power series
∑ d

dx
(an xn) =

∑
n an xn−1 also converges when

|x | < R.

2. The power series

“
∑(∫

an xn dx

)
” =

∑ an
n + 1

xn+1

also converges when |x | < R.
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Differentiation

Here’s the second part, which is very surprising, and very useful.

We’ll state it for derivatives first.

Theorem

Let
∑

an xn be a power series with radius of convergence R, and define:

f (x) =
∞∑
n=0

an xn for all x ∈ (−R,R).

Then f is differentiable on (−R,R), and

f ′(x) =
∞∑
n=0

d

dx
(an xn) =

∞∑
n=1

n an xn−1 for all x ∈ (−R,R).

In fact, this immediately implies that f is differentiable infinitely many
times on (−R,R).
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Integration

Theorem

Let
∑

an xn be a power series with radius of convergence R, and define:

f (x) =
∞∑
n=0

an xn for all x ∈ (−R,R).

Then f is integrable on (−R,R), and the function

F (x) =
∞∑
n=0

an
n + 1

xn+1 is an antiderivative of f on (−R,R).
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You can do even more stuff

You can even multiply power series, though it’s pretty tedious.

Suppose we define two functions with power series (centred at the same
point):

f (x) =
∞∑
n=0

an xn and g(x) =
∞∑
n=0

bn xn

Also suppose that x is some point inside both of their intervals of
convergence. Then:

f (x)g(x) =
[
a0 + a1x + a2x2 + . . .

] [
b0 + b1x + b2x2 + . . .

]
You can expand and collect terms:

= a0b0 + (a1b0 + a0b1)x + (a2b0 + a1b1 + a0b2)x2 + · · ·

and this power series will also converge absolutely.
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Absolutely convergent power series are great

This is the moral of the story:

Inside the interval of convergence (ie. when |x | < R), where the
power series converges absolutely, you can treat a power series like
a polynomial.

This is the main reason we care about absolute convergence so much.
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Taylor polynomials

Now that we know about power series, we want to use them to help us
understand functions better and understand series better.

All of this will come via our discussion of Taylor series.

The idea throughout this topic will be to take messy functions we don’t
know much about, and approximate them with nice functions (ie.
polynomials).

We already did this with the function ex with our example at the end of
last class.
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Taylor polynomials

Example: Let f be a function that is differentiable everywhere.

Suppose we want to approximate f near x = a. That is, come up with a
function g whose values are “close to” the values of f for points near
x = a.

One easy way to do this is to let g be the tangent line to the graph of f :

g(x) = f ′(a)(x − a) + f (a).

We can see that the approximation is perfect at a:

g(a) = f ′(a)(a− a) + f (a) = f (a).
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Taylor polynomials

g(x) = f ′(a)(x − a) + f (a).

However, there’s no reason to believe that g(x) = f (x) for any other
points, so our approximation will likely have some error. We give that error
a name:

R(x) = f (x)− g(x).

There’s no error at a, so R(a) = 0, but for x 6= a, we will probably have
R(x) 6= 0.

We want our approximation to get better the closer x is to a. So we may
want to require:

lim
x→a

R(x) = 0.

ie. We want the error to get smaller the closer x is to a.
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Taylor polynomials

Even more than that though, we want the error to approach zero fast. ie.
We want the approximation to get much better the closer we are to a.

Definition

Let f and g be two functions such that lim
x→a

f (x) = lim
x→a

g(x) = 0 for some

real number a.

We say g approaches zero faster than f as x → a if

lim
x→a

g(x)

f (x)
= 0.

This definition gives us a way to compare two functions, and see which
one is going to zero faster than the other.
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Taylor polynomials

Now we can say one function goes to zero faster than another.

We want to make sure our error R(x) approaches zero very quickly at a,
so we need something to measure it against; some “standard” family of
functions that can serve as a measuring stick for our error functions.

Luckily, we have a very convenient family of functions around that can do
this for us:

(x − a), (x − a)2, (x − a)3, . . . , (x − a)k , . . .

Each of these functions approaches zero at a, and each function on the list
approachees zero faster than all the functions before it on the list:

For any integers m < n, we have lim
x→a

(x − a)n

(x − a)m
= lim

x→a
(x − a)n−m = 0.
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Taylor polynomials

These functions (x − a)k will serve as our “standard” family of functions.

Essentially we’ll use them to say something like “R(x) approaches zero as

x → a at least ‘n-quickly’ if lim
x→a

R(x)
(x−a)n = 0.”

Here’s the more precise version, in the context of approximations.

Definition

Let f and g be two functions such that lim
x→a

f (x) = lim
x→a

g(x) = 0 for some

real number a.

We say g is a good approximation of order n for f at a if

lim
x→a

f (x)− g(x)

(x − a)n
= 0.
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Taylor polynomials

So a good approximation of order n for f at a is another function g such
that the error in the approximation:

R(x) = f (x)− g(x),

goes to zero faster than the nth function in our list of standard functions.

So what does this all have to do with polynomials? We’re getting there.

Theorem

Let a be a real number, n a positive integer, and let f and g be two
functions whose first n derivatives agree at a:

f (a) = g(a), f ′(a) = g ′(a), · · · , f (n−1)(a) = g (n−1)(a), f (n)(a) = g (n)(a).

Then g is a good approximation of order n for f at a.
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Taylor polynomials

The previous theorem follows easily from l’Hôpital’s rule:

Suppose the first n derivatives of f and g agree at a. Then in particular
we know that f (x)− g(x) is continuous, and

lim
x→a

f (x)− g(x) = 0.

Therefore, by l’Hôpital’s rule, we have:

lim
x→a

f (x)− g(x)

(x − a)n
= lim

x→a

f ′(x)− g ′(x)

n(x − a)n−1
.

Since by assumption f ′(x)− g ′(x) is differentiable, it is continuous, and
we can apply l’Hôpital’s rule again to this limit on the right. Doing this n
times, we eventually arrive at:

lim
x→a

f (x)− g(x)

(x − a)n
= lim

x→a

f ′(x)− g ′(x)

n(x − a)n−1
= · · · = lim

x→a

f (n)(x)− g (n)(x)

n!
= 0.
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Taylor polynomials

So finally, the last theorem gives us a simple condition we can check to see
whether a given function is a good approximation for another function.

We now apply this framework to polynomials.

Definition

Let f be a function that has all of its derivatives, let a be a real number,
and n a positive integer.

The nth Taylor polynomial of f at a is the unique polynomial Pn of
smallest degree such that

Pn(a) = f (a),P ′n(a) = f (a), . . . ,P
(n−1)
n (a) = f (n−1)(a),P

(n)
n (a) = f (n)(a)
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Taylor polynomials

Note that the definition does not require that Pn is a degree n polynomial.
Its degree can be less.

It is a routine exercise to derive the following formula (which is just a
generalization of what we did in the differential equation example last
class:

Theorem

Let f be a function that has all of its derivatives, let a be a real number,
and n a positive integer.

The nth Taylor polynomial of f at a has the following form:

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k
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