
MAT137 - Term 2, Week 11

Test 4 is tomorrow, 24 March, at 4pm. See the course website for
details.

Course evaluations are now available. You should have been notified
about them over email. Please fill one out. It’s important to me.

Today we will:

Remind ourselves a bit about power series and Taylor polynomials
Define Taylor series.
Talk about analytic functions.
Talk about the Lagrange Remainder Theorem
Compute some Taylor series of functions we know.
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Some reminders from last class

A power series centred at a is a series of the form

∞∑
n=0

an (x − a)n

where {an}∞n=1 is a sequence.

The x should be treated as a variable, because the goal here is to use the
series to define a function of x .
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Some reminders from last class

We learned that associated to every power series is a
radius of convergence.

If the radius of convergence of
∑

an (x − a)n is 0, the series only
converges at x = a.

If the radius of convergence of
∑

an (x − a)n is ∞, the series converges at
all real numbers.

If the radius of convergence of
∑

an (x − a)n is some value positive real
number R, the series converges absolutely on (a− R, a + R), diverges
everywhere outside [a− R, a + R], and can have any behaviour at the two
endpoints.
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Some reminders from last class

The main reason (so far) that we want to define functions with power
series is because they “act like polynomials” on the intervals where they
converge absolutely.

For example this allows us to differentiate and integrate them easily:

d

dx

( ∞∑
n=0

an (x − a)n

)
=
∞∑
n=0

d

dx
(an (x − a)n) =

∞∑
n=1

n an (x − a)n−1

This is true so long as the power series converges absolutely at x , or in
other words that |x − a| < R, where R is the radius of convergence of the
power series.
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Some reminders from last class

We then moved on to Taylor polynomials.

We developed a way of quantifying how well one function approximates
another function:

Definition

Let f and g be two functions such that lim
x→a

f (x) = lim
x→a

g(x) = 0 for some

real number a.

We say g is a good approximation of order n for f at a if

lim
x→a

f (x)− g(x)

(x − a)n
= 0.
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Some reminders from last class

Then we found out that if the first n derivatives of f and g have the same
values at a, then g is a good approximation of order n for f at a.

This led us to define Taylor polynomials.

Definition

Let f be a function that has all of its derivatives, let a be a real number,
and n a positive integer.

The nth Taylor polynomial of f at a is the unique polynomial Pn of
smallest degree such that

Pn(a) = f (a),P ′n(a) = f (a), . . . ,P
(n−1)
n (a) = f (n−1)(a),P

(n)
n (a) = f (n)(a)
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Some reminders from last class

So the nth Taylor polynomial of a function f at a is a polynomial that is a
good approximation for f of order n at a.

We also found a formula for what they look like, which is easy to verify by
computation:

The nth Taylor polynomial of f at a is:

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k
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Examples

Example: Compute the 7th Taylor polynomial of ex at x = 0.

P7(x) = 1 + x +
1

2
x2 +

1

6
x3 +

1

4!
x4 + · · ·+ 1

7!
x7.

Example: Compute the 5th Taylor polynomial of g(x) = cos(x) at x = 0.

P5(x) = 1− 1

2
x2 +

1

4!
x4

Note that the degree of this polynomial is less than 5.
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Taylor series

Now we are ready to define Taylor series.

Definition

Suppose f is a function that has all of its derivatives, and a is a real
number.

The Taylor series of f and a is the power series S , centred at a, such that

S (k)(a) = f (k)(a) for all k = 0, 1, 2, . . .

In other words, the Taylor series of f at a is the power series S such that
all the derivatives of S and f agree at a.
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Taylor series

It is a simple exercise in induction to prove that the terms in the Taylor
series of f at a look just like the terms in the Taylor polynomials of f at a:

Proposition

Suppose f is a function that has all of its derivatives, and a is a real
number.

Then the Taylor series of f at a is the following power series:

S(x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n.
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Examples

Example: At this point it should not be surprising that the Taylor series of
ex at x = 0 is:

S(x) =
∞∑
n=0

1

n!
xn.

Example: Compute the Taylor series of cos(x) at x = 0.

S(x) =
∞∑
n=0

(−1)n

(2n)!
x2n

Example: Compute the Taylor series of sin(x) at x = 0.

S(x) =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1

Ivan Khatchatourian MAT137 March 23, 2017 11 / 32



There’s more going on here than you think.

CAUTION: I have never claimed that a function f equals its Taylor series!

For example, above we found that the Taylor series of cos(x) at x = 0 is

S(x) =
∞∑
n=0

(−1)n

(2n)!
x2n

but I never claimed that S(x) = cos(x).

This is a very subtle and important point. First we’ll give an example of
how this can go wrong, then describe how we ensure it doesn’t go wrong.
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A very pathalogical example

Example: Consider the following function:

f (x) =

{
e−1/x

2
x 6= 0

0 x = 0

Here’s the relevant part of its graph:
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A very pathological example

f (x) =

{
e−1/x

2
x 6= 0

0 x = 0

Now let’s compute the Taylor series of this function.

It is a a tedious (but purely computational) exercise to check that:

f (k)(0) = 0 for all k = 0, 1, 2, . . .

This implies that the Taylor series of this function is:

S(x) =
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

0

n!
xn = 0.

So the Taylor series absolutely converges everywhere, but S(x) 6= f (x) for
all x 6= 0.
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Now what?

The whole idea here is to use the Taylor series of a function to understand
the function better, or manipulate it more easily.

So our next goal is to find out when and how we can guarantee a function
f equals its Taylor series.

Such a function will be called an analytic function, roughly speaking. We’ll
make this more precise later.

For now just note that we just saw a function that has all of its derivatives
everywhere, but which is not analytic.
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Minimizing error

Think back to our discussion of “good approximations of order n”, error
functions, etc.

Provided f has all of its derivatives at a, we can define

Pn, its nth Taylor polynomial at a, for all n, and

S , its Taylor series at a.

We know that Pn is a good approximation of order n for f at a, and that
this approximation likely has some error for values of x other than a. Call
this error Rn(x).

Therefore, we’ll have that for all x , f (x) = Pn(x) + Rn(x).
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Minimizing error

First of all, note that if x is inside the radius of convergence of the Taylor
series S , we have:

lim
n→∞

Pn(x) = S(x)

This is simply by definition of series convergence; Pn(x) are the partial
sums of the series S(x).

If we also knew that lim
n→∞

Rn(x) = 0, we would have:

f (x) = lim
n→∞

f (x) = lim
n→∞

Pn(x)+Rn(x) = lim
n→∞

Pn(x)+ lim
n→∞

Rn(x) = S(x).

In other words, we have shown that if Rn(x)→ 0, then f (x) = S(x) for
any x inside the radius of convergence of S .
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Here’s what this looks like

Here’s an example of what it looks like when Rn(x)→ 0: the exponential
function f (x) = ex .
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Here’s what this looks like

The exponential function f (x) = ex , and its first Taylor polynomial P1
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Here’s what this looks like

The exponential function f (x) = ex , and its second Taylor polynomial P2
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Here’s what this looks like

The exponential function f (x) = ex , and its third Taylor polynomial P3
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Here’s what this looks like

The exponential function f (x) = ex , and its fourth Taylor polynomial P4
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Analytic functions

Roughly speaking, functions for which Rn(x)→ 0, so that they equal their
Taylor series on some interval, are called analytic.

We’ll state this definition more precisely in a moment, but for now you can
have this fact for free:

Theorem

For all a ∈ R, ex , sin(x), and cos(x) equal their Taylor series centred at a
for all x.

In particular, the following are true for all x :

ex =
∞∑
n=0

1

n!
xn, sin(x) =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1, cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n
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Some definitions

Now let’s be a bit more precise.

Definition

Let f be a function defined at least on an open interval I .

f is C 1 on I of f ′ exists and is continuous on I .

More generally, f is Cn on I if f ′, f ′′, f ′′′, . . . , f (n) all exist and are all
continuous on I .

f is C∞ on I (or sometimes smooth on I if f has all of its derivatives
at every point of I .

f is analytic on I if for every a ∈ I , the Taylor series of f centred at a
converges to f (x) for all x near a.

These properties are listed in increasing order of strength.
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Some definitions

We know now that ex , sin(x), and cos(x) are analytic on R.

We showed that

f (x) =

{
e−1/x

2
x 6= 0

0 x = 0

is C∞ on R, but not analytic on any interval containing 0.

The function

f (x) =

{
x2 sin

(
1
x

)
x 6= 0

0 x = 0

is differentiable everywhere, but its derivative is not continuous, so it is not
C 1.

For each k, the function f (x) = |x |k+1 is C k but not C k+1.
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How can we tell a function is analytic?

So far, I’ve just asked you to believe that ex , sin(x), and cos(x) are
analytic.

Previous work we’ve done about geometric series leads us to believe that

f (x) =
1

1− x
is analytic on (−1, 1).

In general, if we want to prove a function is analytic, we have to prove
that lim

n→∞
Rn(x) = 0 for all x in some interval, as we discussed earlier.

We can do this with the help of theorems that gives us a way to control
Rn(x). We’ll see the most famous one here.
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Taylor’s Theorem

The famous theorem below gives an explicit expression for the remainder,
usually called the “integral form”:

Theorem

Let n be a positive integer, and suppose f is Cn+1 on an interval I that
contains a point a. Let Pn be its nth Taylor polynomial at a.

Then for all x ∈ I , we have f (x) = Pn(x) + Rn(x), where

Rn(x) =
1

n!

∫ x

a
f (n+1)(t)(x − t)n dt.

This integral is a mess though, so instead of working with it we use
theorems that estimate its value
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Lagrange’s Remainder Theorem

Theorem (LRT)

Let n be a positive integer, and suppose f is Cn+1 on an interval I
containing a point a.

Then for any x ∈ I , we have:

Rn(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1,

for some number c in between a and x.

This is a consequence of the MVT. Note that the value of c depends on n
and x .

We can use this theorem to prove that ex is analytic on R, without much
difficulty.
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Proving the exponential is analytic

We’ll start by doing the proof for a = 0 in detail.

Proof: Fix an arbitrary real number x . We’d like to show that Rn(x)→ 0.

By the LRT, we have an expression for this remainder:

Rn(x) =
ec

(n + 1)!
xn+1,

where c is some number between 0 and x . Here we’ve used the fact for
any n, the (n + 1)th derivative of ex is itself.
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Proving the exponential is analytic

Rn(x) =
ec

(n + 1)!
xn+1,

It’s tough to control this sequence as it is, since the value of c can change
depending on n.

So instead of proving Rn(x)→ 0 directly, we’ll show that |Rn(x)| → 0, and
then apply the Squeeze Theorem.

We can check:

|Rn(x)| =
ec

(n + 1)!
|x |n+1 <

M

(n + 1)!
|x |n+1

where M is any upper bound for the value of ec on the interval joining 0
to x . We can use M equalling either 1 or ex depending on the sign of x .
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Proving the exponential is analytic

|Rn(x)| =
ec

(n + 1)!
|x |n+1 <

M

(n + 1)!
|x |n+1

The sequence on the right goes to zero by the Big Theoren, since the
(n + 1)! term in the denominator grows much faster than the |x |n+1 term
in the numerator.

It follows that |Rn(x)| → 0, and in turn that Rn(x)→ 0, each by the
Squeeze theorem, since:

0 ≤ |Rn(x)| ≤ M

(n + 1)!
|x |n+1 and − |Rn(x)| ≤ Rn(x) ≤ |Rn(x)|

Therefore, we have shown that:

ex =
∞∑
n=0

1

n!
xn.
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Proving the exponential is analytic

To prove that ex is analytic, we actually have to show that it equals its
Taylor series centred at any a ∈ R. In other words, that:

ex =
∞∑
n=0

ea

n!
(x − a)n for all a ∈ R.

This is almost as easy as the a = 0 case though. The only difference is
that in choosing M, we have to find an upper bound for ex on the interval
joining a to x .

Similarly to before, we can choose M equalling either ex or ea, depending
on whether x is larger or smaller than a.
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