
MAT137 - Week 11

Your second test is on Friday, 1 December, 4-6pm. See the course
website for details.

Today’s lecture is primarily about limits at infinity, and l’Hôpital’s
rule.

You have homework from this lecture. See slide 17.
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A problem from last class

Last class I left you with this problem for homework.

Problem 3. Find the area of the smallest circle centred at the point (1, 4)
which intersects the parabola y2 = 2x .

Ivan Khatchatourian MAT137 23 November, 2017 2 / 20



Limits at infinity

So far we’ve defined limits at a point, which are written like

lim
x→a

f (x) = L

(if they exist). We’ve also defined

lim
x→a

f (x) =∞ and lim
x→a

f (x) = −∞.

Today we’ll talk about limits at infinity:

lim
x→∞

f (x) = L and lim
x→−∞

f (x) = L.
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Motivation

When discussing limits at a point, our intuition was that

lim
x→a

f (x) = L

means something like
f (x) can be made arbitrarily close to L by making x sufficiently
close to a.

Now, consider the function g(x) = 1
x .

Exercise: Convince yourself that you can make g(x) as close as you want
to 0 by making x sufficiently large.
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Limits at infinity

Intuitively, the notation
lim

x→∞
f (x) = L

should mean something like
f (x) can be made arbitrarily close to L by making x sufficiently
large.

Exercise: Suppose f is a function defined on an interval of the form
(p,∞) for some real number p. Write down a definition for the statement

lim
x→∞

f (x) = L.
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Limits at infinity

Definition
Suppose f is a function defined on an interval of the form (p,∞) for some
real number p. Then

lim
x→∞

f (x) = L

means

∀ε > 0 ∃M ∈ R such that x > M =⇒ |f (x)− L| < ε.

Exercise: Write down a similar definition for the statement
lim

x→−∞
f (x) = L.
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Examples

1. Prove that lim
x→∞

1
x2 = 0.

2. Prove that lim
x→∞

sin(x)
x2 = 0.

(This reminds us of the Squeeze Theorem, which does also apply to limits
at infinity.)

3. Prove that lim
x→∞

cos(x) does not exist.
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Examples

1. Evaluate lim
x→∞

x −
√

x2 + 7.

2. Evaluate lim
x→∞

3x2 + 7x + 1
8x2 + 4 .

The moral of Problem 2 is that we found the fastest-growing term, and
divided by them to “cancel out” the growth.

Exercise. Evaluate lim
x→∞

7e7x + sin(x)
e7x + 7 .
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Be careful
What’s wrong with this solution? Compute: lim

x→−∞
x −
√

x2 + x .

Proof.

lim
x→−∞

x −
√

x2 + x = lim
x→−∞

x −
√

x2 + x · x +
√

x2 + x
x +
√

x2 + x

= lim
x→−∞

x2 − (x2 + x)
x +
√

x2 + x

= lim
x→−∞

−x

x
(

1 +
√

1 + 1
x

)
= lim

x→−∞

−1
1 +

√
1 + 1

x

= −1
2
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Indeterminate forms

Recall that if we know

lim
x→a

f (x) = L and lim
x→a

g(x) = M,

(and M 6= 0), then the limit law for quotients tells us that

lim
x→a

f (x)
g(x) =

L
M .

In other words, by knowing the limits of f and g , we can determine the
limit of f

g from the form of the function alone.
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Indeterminate forms

The same is not true if L = M = 0.

Exercise. For each part, find a pair of functions f and g such that

lim
x→0

f (x) = 0 = lim
x→0

g(x),

but such that...
1 ... lim

x→0
f (x)
g(x) = 7.

2 ... lim
x→0

f (x)
g(x) = 0.

3 ... lim
x→0

f (x)
g(x) =∞.

4 ... lim
x→0

f (x)
g(x) doesn’t exist, and doesn’t equal ±∞.
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Indeterminate forms

For this reason, if
lim
x→a

f (x) = 0 = lim
x→a

g(x),

we say that lim
x→a

f (x)
g(x) is indeterminate of type 0

0 .

The same is true if

lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞.

In this case, we say that lim
x→0

f (x)
g(x) is indeterminate of type ∞∞ .

L’Hôpital’s rule is a tool for dealing with limits of these two types.
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Some intuition

Here’s some intuition for the statement of L’Hôpital’s rule.

Suppose L1 and L2 are lines with slopes m1 and m2, respectively. Also
suppose they both have zeros at x = 7.

Then lim
x→7

L1(x)
L2(x)

is indeterminate of type 0
0 .

Of course, we can just write down their equations easily:

L1(x) = m1(x − 7) and L2(x) = m2(x − 7).

and we can evaluate the limit easily:

lim
x→7

L1(x)
L2(x)

= lim
x→7

m1
m2

=
m1
m2

= lim
x→7

L′1(x)
L′2(x)
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Some intuition

For more general functions (not all functions though), if

lim
x→a

f (x) = 0 = lim
x→a

g(x),

and in addition f and g are differentiable near (and at) a, and g ′(a) 6= 0,
then f and g are closely-approximated by their tangent lines at a:

L1(x) = f ′(a)(x − a) and L2(x) = g ′(a)(x − a).

So we might expect to get:

lim
x→a

f (x)
g(x) = lim

x→a
f ′(a)(x − a)
g ′(a)(x − a) =

f ′(a)
g ′(a) .

THIS IS NOT A PROOF!!! ...I secretly assumed many things.
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L’Hôpital’s rule

This theorem is tricky to state, because there are many cases.

Theorem
Let a ∈ R, and let f and g be functions defined at and near a.

Suppose that
lim
x→a

f (x)
g(x) is indeterminate of type 0

0 or ∞∞ .

f and g are differentiable near a (except possibly at a).
g is never 0 near a (except possibly at a).
g ′ is never 0 near a (except possibly at a).
lim
x→a

f ′(x)
g ′(x) exists, or is ±∞.

Then:
lim
x→a

f (x)
g(x) = lim

x→a
f ′(x)
g ′(x)
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L’Hôpital’s rule

In the theorem we just stated, “near a” means “on an open interval
containing a”.

The theorem also holds for limits as x →∞ or x → −∞, in which case
“near a” is replaced with “on an interval of the form (p,∞) or (−∞, p)
for some p ∈ R”, respectively.
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Examples

1. Use L’Hôpital’s rule to compute lim
x→0

x2 − 7x
ex − 1 .

2. Compute lim
x→∞

x2

ex .

3. Compute lim
x→0

2x − sin(2x)
x sin(x) . (We didn’t see this one in lecture.)

Homework: Show that for any natural number N, lim
x→∞

xN

ex = 0.
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Warnings

L’Hôpital’s rule is very powerful, but with great power comes great
responsibility.

Warning 1: The hypotheses are all important.

Example: Evaluate lim
x→∞

x + sin(x)
x .

INCORRECT PROOF.
The top and bottom both →∞, so this is indeterminate of type ∞∞ . So:

lim
x→∞

x + sin(x)
x

L’H
= lim

x→∞
1 + cos(x)

1 = lim
x→∞

[
1 + cos(x)

]
.

The last limit doesn’t exist, so lim
x→∞

x+sin(x)
x doesn’t exist.

(It’s easy to check that the original limit does exist and equal 1.)
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Warnings

Warning 2: L’Hôpital’s rule doesn’t always help.

Example: Evaluate lim
x→∞

ex − e−x

ex + e−x .

The top and bottom both →∞, so this is indeterminate of type ∞∞ . So:

lim
x→∞

ex − e−x

ex + e−x
L’H
= lim

x→∞
ex + e−x

ex − e−x
L’H
= lim

x→∞
ex − e−x

ex + e−x
L’H
= · · · · · ·

These equalities are all true, they just don’t go anywhere.

L’Hôpital’s rule is just another tool you can use; it doesn’t magically solve
all problems.

(Exercise: Compute this limit.)
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Warnings

Warning 3: Don’t blindly apply it without simplifying things if you can.

[Contrived] Example: Compute lim
x→0+

log(x)(
1
x

) .

lim
x→0+

log(x)(
1
x

) L’H
= lim

x→0+

(
1
x

)
(
− 1

x2

) L’H
= lim

x→0+

(
− 1

x2

)
(

2
x3

) L’H
= lim

x→0+

(
2
x3

)
(
−6
x4

) L’H
= · · · · · ·
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