
MAT327 - Lecture 2

Friday, May 10th, 2019

Definition : Refinements

Let X be a set, let T1, T2 be two topologies on X. We say that T1 is finer than
T2 if T1 ⊇ T2. We also say that T2 is coarser than T1. Most commonly, we’ll say
that T1 refines T2.

The way I remember this is just by remembering that the discrete topology is the
finest on a space, and the indiscrete topology is the coarsest. From there, I can figure
out on my own that the finer topology is the ’bigger’ one, and the coarser topology is
the ’smaller’ one.

Example :

Recall the topologies on R we defined last lecture. The following holds:

Rusual

Rco-finite

⊇ Rray

Rdiscrete

⊇
⊇

⊇

⊇
Rindiscrete

(You don’t wanna know how hard this was to draw.)

Now, if T1 6⊆ T2 and T1 6⊇ T2, we say that T1 and T2 are incomparable.

Not just in R, but in general, we always have that (X, Tdiscrete) is the finest topology
on a set X. That is, for any topology T on X, we have that Tdiscrete ⊇ T.
Similarly, if T is any topology on X, then T ⊇ Tindiscrete.

Topological Bases

We have seen that topologies can be defined explicitly by specifying their open sets.
But this won’t always work. Even in our usual topology on Rn, we have only a rough
idea of what open sets look like. They look like open blobs that don’t contain any of
their boundary.

The advantage of a topological basis is that it’s usually easier to define one than to
define a topology by specifying its open sets. The tradeoff is that bases are harder to
work with once they are defined.

As we discussed in the last lecture, there is a sense in which the open intervals (a, b)
are the fundamental building blocks of Rusual. We now explore this idea.
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Definition : Basis

Let X be a set, and let B ⊆ P(X). We say that B is a basis on X if the following
holds:

1. B covers X, (that is,
⋃
B = X)

2. For every B1, B2 ∈ B, for every x ∈ B1 ∩B2, there exists a set B ∈ B such
that x ∈ B ⊆ (B1 ∩B2).

B1 B2

B1 ∩B2

B

.
x

Figure: Property (2) is illustrated here. The idea is that we can always find a set in
our basis that lies in the intersection B1 ∩B2 and contains our point x. This idea
is related to B being closed under finite intersections, but it’s a strictly weaker
condition. Note that if B is closed under finite intersections, this condition
follows immediately by letting B = B1 ∩B2.

Example :

Let S be any set. The set B = {{x} : x ∈ S} is a basis on S.

Proof. That
⋃
B = S is obvious. Now let B1 = {b1} and B2 = {b2} be any two

singletons in B. If B1 6= B2 we are done, as their intersection is empty and condition
(2) is vacuously satisfied.

Otherwise, if B1 = B2, their intersection is just {b1}, for which we can let B = B1

and b1 ∈ B = B1 ∩B2. �

Example :

The set B = {(a,∞) : a ∈ R} is a basis on R.

Proof. To show that
⋃
B = R, let x ∈ R. Take a = x− 1, for which x ∈ (a,∞), and

(a,∞) ∈ B by definition. Therefore x ∈
⋃
B, and so

⋃
B = R. (I’m going to skip the

⊇ direction altogether as there’s nothing to do for it.)

For property (2), let (a,∞) and (b,∞) be in B. As we’ve proven in the previous
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lecture, these sets are closed under finite intersections, so property (2) is implied.

To see this, assume without a loss of generality that a < b, then their intersection is
just (b,∞). For every x ∈ (b,∞), we can simply let B = (b,∞), so that x ∈ (b,∞). �

Note that so far, bases have had nothing to do with topologies. We’ve defined them
in such a way that they only relate to the set they are constructed over (the set we’ve
been calling X all this time). It still remains to be shown that every basis defines a
topology, which was our original goal.

Theorem : The Basis Topology

Let B be a basis on a set X. Define:

TB =

{⋃
C : C ⊆ B

}

Then TB is a topology.

Proof. Clearly ∅ and X are in TB, which follows from letting C = ∅ and C = B
respectively. In the first case,

⋃
∅ = ∅.1

In the second case, we know that
⋃
B = X, since B is a basis.

We’ll next prove that TB is closed under arbitrary unions, as we’ll need this to prove
that TB is closed under finite intersections.

Let {Ui : i ∈ I} be a subset of TB with indexing set I. By definition of TB, Ui =
⋃
Vi

for some Vi ⊆ B.

We then have that: ⋃
i∈I

Ui =
⋃
i∈I

(⋃
Vi

)
=
⋃(⋃

i∈I

Vi

)
∈ TB

The notation in that last step gave me a lot of trouble. When we don’t index our
union, we’re just taking all the elements of all the sets inside the collection. However,
in this case, we’re taking a different kind of union. Now, we’re taking each collection
Vi, bunching together all of their sets to get a much bigger collection of sets, which is⋃

i∈I Vi, and only then taking the union over this big collection.

It shouldn’t be too hard to convince yourself that you get the same result.

Finally, we prove that TB is closed under finite intersections. It suffices to prove this
for two elements U and V ∈ TB, as we can apply an induction argument to larger
finite intersections.

1 Make sure you’re comfortable with what this means. On the left side of this equality, we are
thinking of ∅ as an empty collection of subsets of X. In the second case, we are thinking of it as an
empty collection of elements of X.
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Suppose U =
⋃
C and V =

⋃
O are elements of TB. Then:

U ∩ V =

(⋃
C

)
∩

(⋃
O

)

=
⋃
{C ∩O : C ∈ C : O ∈ O}

This last equality might also require you to stare at it for a bit to convince yourself
it’s true, but I promise it’s nothing too bad. If you try to write out the proof of this
it will fall apart very fast.

As this is just an arbitrary union of these (C ∩O)’s, it suffices to show that each
C ∩O is an element of TB. This follows from the fact that TB is closed under
arbitrary unions which we’ve already shown.

Indeed, fix some C ∈ C and some O ∈ O. If their intersection is empty we are done.
Otherwise, pick some point x ∈ C ∩O. By property (2) of the basis, there must exist
some basis element Bx ∈ B such that

x ∈ Bx ⊆ C ∩O

Repeating this for every x ∈ C ∩O:

C ∩O ⊆
⋃

x∈C∩O

Bx ⊆ C ∩O

Which implies that

C ∩O =
⋃

x∈C∩O

Bx

Where the collection {Bx : x ∈ C ∩O} which we are taking the union over, is just a
subset of B. Therefore C ∩O ∈ TB.

And that concludes the first ’hard’ proof in this course. �

During lecture, the student in front of me asked a very good question. Remember
how in linear algebra, there was a notion of a basis being minimal? That is, if your
basis was any smaller, it wouldn’t generate the space, and if it was any bigger, you’d
have a redundancy.

The student’s question was if a similar notion existed for topological bases, if there
was a property analogous to linear independence.

Ivan’s answer was that, given a topology T on a set X, finding a basis for T isn’t
always possible. He also said that we won’t be concerning ourselves too much with
bases being minimal because it isn’t a very useful thing to know.
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There is, however, a nice property that bases have that agrees with the intuition
we’ve built up so far; the basis generated by a topology is the ’smallest’ topology
containing that basis. This is somewhat analogous to a theorem in linear algebra that
says the span of a set of vectors is the smallest vector space containing that set. See
big list exercise 2.6.

Other than that, see big list exercises 2.1 and 2.2 for an example of reducing the size
of a basis while it remains a basis.
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