
MAT327 - Lecture 3

Wednesday, May 15th, 2019

In his notes, Ivan mentions the following definition of the topology defined by a basis:

Definition :

TB = {U ⊆ X : ∀x ∈ U,∃B ∈ B such that x ∈ B ⊆ U}

Note that if U = ∅, the condition is vacuously satisfied.

This is very similar to the way open sets are defined on Rn, and metric spaces in
general.

We’ll first prove that this is in fact a topology.

Proof. It’s easy to see that both ∅ and X are in TB.

For arbitrary unions, let U = {Ui : i ∈ I} be a collection of open sets with indexing
set I. Pick some x ∈

⋃
U . Then x ∈ Ui for some i ∈ I. So there exists a B ∈ B such

that x ∈ B ⊆ Ui ⊆
⋃
U .

For finite intersections, suppose that U1, U2 ∈ TB. If their intersection is empty we are
done as the condition on all x ∈ U is vacuously satisfied.

Otherwise, fix some x ∈ B1 ∩B2. Then there exists B1, B2 ∈ B such that x ∈ B1 ⊆ U1

and x ∈ B2 ⊆ U2. Therefore x ∈ B1 ∩B2.

By the finite intersection property of bases, there exists some B ∈ B such that
x ∈ B ⊆ B1 ∩B2 ⊆ U1 ∩ U2, so we are done. �

We’ll now prove that both definitions of this topology are equivalent.

Define:

T ′
B =

{⋃
C : C ⊆ B

}
Which is just our definition from last lecture. We’ll show that TB ⊆ T ′

B.

(⊆) Let U ∈ TB. For each x ∈ U take Bx so that x ∈ Bx ⊆ U . Then
⋃

x∈U Bx = U , so
U ∈ T ′

B.

(⊇) Let U ∈ T ′
B. Then U is just a union of basic open sets1. That is, U =

⋃
C for

some C ⊆ B. Pick some x ∈ U . Then x ∈ C for some C ∈ C ⊆ B. This C shows that
U is open in TB. �

1 This word will be used a lot in this course. Convince yourself that every element of a basis is
open in the topology that it defines (under either definition). This is why we call elements of the basis
basic open sets.
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Example :

Let (X1, T1) and (X2, T2) be topological spaces. Then the set:

{A×B : A ∈ T1, B ∈ T2}

Is a basis (but not a topology) on X1 ×X2.

The reason they’re not a topology is that “the union of two open rectangles is not
necessarily a rectangle.” The easiest way to see this is in R2:

Theorem : Important Lemma

Let B1 and B2 be bases on a set X. Then TB1 ⊆ TB2 if and only if for all
x ∈ X and for all B1 ∈ B1 containing x, there exists a set B2 ∈ B2 such that
x ∈ B2 ⊆ B1.

The proof is apparently an exercise in symbol-pushing. �
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Figure: Given an open set B1 ∈ B1 about the point x, we can find an open ball
B2 ∈ B2 contained in B1 that also contains x.

A condition we might want for this theorem to be true is that B1 ⊆ B2, but the
condition given in the theorem statement is actually a much stronger condition. Two
bases on R2 are the set of all open rectangles and the set of all open balls. These two
bases are disjoint, but they both generate Tusual. This can be verified by this lemma.

This lemma also allows us to check whether a topology refines another one based on
only their respective bases.

There’s some useful corollaries to this.

Theorem : Corollary 1

Let (X, T ) be a topological space. A set A ⊆ X is open if and only if for all
x ∈ A, there exists some U ∈ T such that x ∈ U ⊆ A

Theorem : Corollary 2

Let B be a basis on a set X (independent of an topology), then TB = T if and
only if B ⊆ T and for all U ∈ T, and for all x ∈ U , there exists a B ∈ B such
that x ∈ B ⊆ U .

This is a condition for checking when a particular topology is the same one as that
generated by a fixed basis.

Both of these are once again, exercises in symbol pushing.

Closed Sets and Closures

Closed sets and closures are two ways of defining the same thing. We’ll now answer
our question from the beginning of the course, of what it meant for two points to be
close to each other.
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Our immediate intuition might be to think about closeness in terms of sequence
convergence.

Definition : Sequence Convergence in Rn

A sequence (xn)n∈N is said to converge to a point x ∈ Rn if for all ε > 0, there
exists an N ∈ N such that for all n > N , ||xn − x|| < ε.

In terms of the usual topology we can define this as:

”For all open sets U ∈ Rn containing x, there exists an N ∈ N such that for all
n > N , xn ∈ U .”

Here we might think of U as being an open ball, in which case our usual notion of
sequence convergence applies.

Definition : Closure of a Set

Let (X, T ) be a topological space, and let A ⊆ X. We define the closure of A
in (X, T ), denoted as A, as:

{x ∈ X : For all open U containing x, U ∩ A 6= ∅}

Equivalently,

x 6∈ A⇔ there exists an open set U containing x such that U ∩ A = ∅

So the closure’s complement is the set of points that can be ”separated” from A by
putting them in an ”open bubble”. Another way to think about this, the closure of A
is the set of all points (including those not in A) which are close to A.

Theorem : Properties of Closure

Let (X, T ) be a topological space, and let A,B ⊆ X. Then the following holds:

1. A ⊆ A

2. A = A

3. A ∪B = A ∪B

4. X \ A is open if and only if A = A

5. ∅ = ∅, X = X

Proof. (1) Follows immediately. �
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Proof. (2) By (1), A ⊆ A. It remains to be shown that A ⊆ A.

Fix some point x ∈ A. Let U be an open set containing x, by definition of A, there
exists some y ∈ A ∩ U . So U ∩ A 6= ∅ by definition of A. �

Proof. (4) (⇒) Assume that X \ A is open. We know that A ⊆ A. We have to show
that A ⊆ A. Suppose not, then A \ A 6= ∅, so fix some x ∈ A \ A. Then x ∈ X \ A,
and X \ A is open, but (X \ A) ∩ A 6= ∅, contradicting the fact that x ∈ A. �

(⇐) Assume that A = A, let x ∈ X \ A = X \ A. Therefore there exists some open
set U ∈ X \ A containing x. As x was arbitrary, this shows that X \ A is open. �

Remark: This is an important trick to know for showing that a set is open, namely
picking some arbitrary point in the set and showing that there exists an open ball
which contains that point and remains inside the set. If this is true for every point,
the set can be written as a union of these open balls (which is open!)

Example :

In Rusual:

1. (a, b) = (a, b] = [a, b) = [a, b] for any interval consisting of points a < b ∈ R.

2. {7} = {7}

3.

{
1

n
: n ∈ N

}
=

{
1

n
: n ∈ N

}
∪ {0}

In general these aren’t true. The following examples demonstrate this:
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Example :

1. Consider the set X = {0, 1}, T = {φ,X, {1}}. Here, {1} = X.

2. More generally, consider R7. Here, even more surprisingly, {7} = R.

3. In (X, Tdiscrete), A = A for any A ⊆ X. Ivan said to think of the discrete
topology as a topology where all points are far apart.

4. In (X, Tindiscrete), A = X for any A ⊆ X. Here, we think of the indis-
crete topology as a horrid place where every two points are closely packed
together.

5. In Rray, {7} = (−∞, 7]

6. In RSorgenfrey, {7} = {7}.

7. In RSorgenfrey, let:

A =

{
1

n
: n ∈ N

}
B =

{
− 1

n
: n ∈ N

}
Here A = A ∪ {0}, but B = B.

Remark: In Rusual, it doesn’t matter which side a sequence approaches its limit
point, we say it converges all the same. In RSorgenfrey, the direction we approach the
point matters. It won’t converge if we approach from the left, but it will if we
approach from the right. This is just another example of RSorgenfrey being worlds
different from Rusual, despite how similar they look.

Definition : Closed Sets

Let (X, T ) be a topological space, and let C ⊆ X. C is said to closed in (X, T )
if X \ C is open in T .

Note that being closed is not the same as being ”not open”. These are two related
concepts with horrible names.

It follows immediately from de Morgan’s laws that the finite unions and arbitrary
intersections of closed sets are closed.

Just as we specified topologies by their open sets, it is actually also possible to define
topologies based on their closed sets. This is what we were doing with the co-finite
and co-countable topologies.

6



Example :

In Rusual,

1. (0, 1) is open.

2. [0, 1] is closed.

3. (0, 1] and [0, 1) are neither closed nor open.

4. ∅ and R are both closed and open (called clopen).

Theorem :

A set A is closed if and only if A = A .

The proof of this fact is essentially done for us. We’ve shown above (Properties of
Closure #4) that X \ A is open if and only if A = A.

Theorem :

Let (X, TX) be a topological space. Let A ⊆ X. Then:

A =
⋂
{C ⊆ X : C is closed and A ⊆ C}

That is, A is the smallest closed set containing A.

Proof. (⊆) let x ∈ A. Let C be any closed set such that C ⊇ A. If x 6∈ C, then X \ C
is an open set containing x, but not intersecting A since (X \ C) ⊆ (X \ A). This
contradicts the assumption that x ∈ A.

(⊇) We’ve shown that A is closed and that A ⊆ A, so we’re done. �

One final definition:

Definition :

Let (X, TX) be a topological space. We say that a subset D ⊆ X is dense if
D = X.

What this says is, a dense set is ”close” to the whole set.

Example :

The rational numbers Q are dense in Rusual.
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