
MAT327 - Lecture 5

Wednesday, May 22nd, 2019

Theorem :

N× N is countable.

Proof. The idea of the proof is sketched by the following figure.
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More explicitly, the function f : N×N→ N defined by f(m,n) = 2n3m is an injection
by uniqueness of prime factorizations.

Corollary 1: If A,B are countable, so is A×B.

Corollary 2: Any finite Cartesian produce of countable sets is countable (By
induction).

Corollary 3: Q is countable.

Define the mapping:

f : Q→ Z× N; f

(
p

q

)
= (p, q)

Where it is understood that p/q is in lowest terms before we plug it into the function.
This mapping is an injection.

Corollary 4: Countable unions of countable sets are countable.

Assume without loss of generality that the sets {An : n ∈ N} are disjoint, and assign
each of them to one column of N of the form (c, n), letting n vary through N.
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This last proof requires AOC.

Definition : Uncountable

A set A is uncountable if it is not countable.

Wow!

Theorem : Cantor’s Theorem

(0, 1) ⊆ R is uncountable.

Proof. Suppose not. Certainly (0, 1) is not finite, so fix a bijection f : N→ (0, 1).
This function has the following form:

1 0.a11a12a13a14 . . .
2 0.a21a22a23a24 . . .
3 0.a31a32a33a34 . . .
4 0.a41a42a43a44 . . .
. .
. .

Now for each n ∈ N, let an be a digit other than f(n)n, where the subscript denotes
the nth digit of this real number.

By construction, ak = 0.a1a2a3a4 . . . differs from f(k) in exactly one digit. In
particular, it is not equal to any of the real numbers on this list. We’ve constructed a
real number that wasn’t on the list.

There is a subtle problem. It doesn’t matter unless we’re trying to be extremely
rigorous, but we might have two representations of the same number. Recall that
0.1 = 0.999999 . . .

This problem is remedied by defining an in the following way:

ak =

{
1 if xkk 6= 1
2 if xkk = 1

This avoids the problem of repeating 9’s occurring. �

Remark: This is a famous proof called Cantor’s Diagonalization Argument. We will
be doing more proofs like this.

Now here’s Ivan’s favourite proof of all time.

Theorem :

Let A be a set. There is no surjection f : A→ P(A).
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Proof. Suppose that such a function f : A→ P(A) exists. We will show that f is not
surjective.

Define the set:
D = {x ∈ A : x 6∈ f(x)}

Don’t get confused here by “x 6∈ f(x)”, remember we are mapping to P(A), so f(x) is
a subset of A. x is in D if and only if it happens to be a member of the set that it
maps to.

Note that D ∈ P(A), so suppose for the sake of contradiction assume that f is
surjective. Here, we could also assume the weaker condition that there exists some
a ∈ A such that f(a) = D.

Now there’s two cases to consider. In the first case where a ∈ D, then a 6∈ f(a), but
f(a) = D, so a 6∈ D, which is a contradiction.

Otherwise, a 6∈ D, but D = f(a), which implies that a ∈ D. The ol’ switcheroo. �

”Suppose D is the set of all people in MAT327. If I ask one of them not to come to
class, they’re not in the set anymore. *laughs*” ∼ Ivan

The cleverness here was only in defining D in such a way that it breaks our
assumption.

So now we have that
|N| < |P(N)| < |P(P(N))| . . .

In particular, there are infinitely many infinities, and no largest infinity.

Exercise: (Big List) Prove that |P(N)| = |R|.
Now, does there exist a set A such that |N| < |A| < |R|? There does, but the
question of if there exists some B such that |R| < |B| < |P (R)| is undecidable.

We denote the cardinality of N as ℵ0. We denote the cardinality of R as C.

Now, some definitions.

Definition : Separable

A topological space (X, T ) is called separable if it has a countable dense subset.

Definition : Second Countable

A topological space (X, T ) is called second countable if X has a countable
basis B which generates T .

Intuitively, a space is second countable if it can be specified with a countable amount
of information. This definition does not say that every basis is countable, only that
one exists.
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Example : Second-Countable

Recall we found that the set BQ, defined as:

BQ = {(a, b) : a < b ∈ Q} ,

forms a basis for the usual topology on R. It’s not too much of a stretch to show
that this set is countable. We can define an obvious bijection between it and
Q × Q, which is countable since it is a cartesian product of two countable sets,
by corollary 1.
Hence, Rusual is second-countable.

Example : Separable sets

R with its usual, Sorgenfrey, particular point, and ray topologies are all separable.

The following definition is one we use to talk about how much ’room’ is in a space.
We’ll see it come up a lot in the next few lectures.

Definition :

A topological space (X, T ) has the countable chain condition (CCC) if there
are no uncountable collections of pairwise disjoint open sets.

Exercise: Show that Rusual and RSorgenfrey are ccc.

Exercise: Show that Xdiscrete is ccc if and only if X is countable.
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