
MAT327 - Lecture 6

Friday, May 24th, 2019

Definition :

Let (X, T ) be a topological space. A sequence {xn}n∈N in X is said to converge
to a point x ∈ X if for all open sets U containing x, there exists some N ∈ N
such that for all n > N , xn ∈ U .

x

X

U

We write this as xn → x.

Now, some examples...
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Example :

1.
1

n
→ 0 in Rusual and RSorgenfrey

2. − 1

n
→ 0 in Rusual in Rusual but not in RSorgenfrey.

3. In every topological space, the constant sequence x, x, x, . . . converges to
x.

4. In Xdiscrete, a sequence converges to a point x ∈ X if and only if it is
eventually constantly equal to x. This is a consequence of the fact that x
is open, and any open set containing x must be a superset of x.

5. In (X, Tp), eventually constant sequences still converge to the constant
value. For any x 6= p, any sequence that is eventually only p or x, like
p, x, p, x . . ., converges to x (but not p, be careful here).

6. In (X, Tp), the constant sequence p, p, p, . . . converges to everything.

7. Taking it a step further, in (X, Tindiscrete), every sequence converges to every
point. Given a point, there is exactly one open set containing it, which is
the entire space.

These last two examples are particularly bad. This is the first time we’ve seen that
limits of sequences need not be unique. The natural question arises, what conditions
can we put on a space to ensure that sequences in that space only converge to one
point?

Example :

1. In Rray, 1/n and −1/n both converge to 0. They also both converge to
anything less than 0.

2. In Rco-finite, the sequence 0, 1, 0, 1, . . . does not converge as its image is finite.

3. in Rco-countable, eventually constant sequences do converge to (only) their
constant values. No other sequences converge. The reason for this is that
for any non-constant sequence {xn}n∈N, and for any potential limit point
x, we can construct the open set:

(R \ {xn : n ∈ N}) ∪ {x}

Which contains x, and doesn’t contain a tail of the sequence.
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In that last example, notice how the convergent sequences in Rco-countable and Rdiscrete

are exactly the same.

As Ivan mentions in his notes on Nets and Filters, there is no way to determine that
these two spaces are any different if we’re only analyzing sequence convergence in
these spaces. See these notes for how we can fix this.

We now define some properties that will help us diagnose how good a space behaves
with respect to sequence convergence.

Definition : T0

A topological space (X, T ) is said to be T0 if for every pair of distinct points
x1, x2 ∈ X, there is an open set that contains one but not the other.

Note that this is not a symmetric property. It’s also not a very powerful property. All
of the spaces we’ve seen so far are T0 except the indiscrete topology.

OR

T0

x xy y

More importantly,

Definition : T1

(X, T ) is said to be T1 if for every x 6= y ∈ X, there exists U and V open such
that x ∈ U , y 6∈ U , y ∈ V , and x 6∈ V .

T1

x y

U V

This is just T0 but made symmetric. That is, U and V must both exist with the
desired properties. In T0, only one of them had to exist. This definition becomes
useful for (constant) sequence convergence.
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Example : T0

Rray and Rp are both T0 but not T1.

Theorem :

In a topological space (X, T ), the following are equivalent:

1. (X, T ) is T1

2. For every x ∈ X, the set {x} is closed. This last one is often given as the
first definition of T1.

3. Every finite set F ⊆ X is closed.

4. For every S ⊆ X, S =
⋂
{U ∈ T : S ⊆ U}

5. Constant sequences converge (only) to their constant values.

The proof of all of these isn’t too bad. For each of them, try to think about why the
proof fails if we only have a T0 space.

For some of these proofs, like (1⇒ 5), it may help you understand the T1 property a
bit better if you think about what step of the proof fails if the space is only T0. For
me, this helps me understand it better than a simple counterexample.

Example : T1

Rco-countable is T1. But sequences are still weird. For example, 1, 2, 3, 4, . . . still
converges to everything.

We’ve fixed the constant sequences, but we still have a problem. As most sequences
are not constant, We still need something stronger to make sequences behave nicely.

Definition : Hausdorff

We say that a topological space (X, T ) is Hausdorff (or T2) if for all x 6= y ∈ X
there exist disjoint open sets U, V such that x ∈ U and y ∈ V .
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T2

x y

U V

A Hausdorff space ensures that the sets U and V are disjoint, whereas in T1 spaces
there might have been overlap.

The reason we’re being told all this now, is because now we can state the following
theorem:

Theorem :

In a Hausdorff space, every sequence converges to at most one point.

So being Hausdorff is the weakest property we can put on a space so that limits of
sequences are unique. It’s another name we can give to a property that was true for
Rn and that we took for granted.

In doing this, we strip away another layer of Rn. We have the ability to say “Ah,
that’s why limits are unique.”

The natural question here is if the converse is true. It is not, as demonstrated by this
annoying counterexample.

In Rco-countable, every two (non-empty) open sets intersect a lot, the space is T1 but
not Hausdorff, yet limits are unique.

Next lecture, what additional condition can we put on the space to ensure that the
converse does hold?
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