
MAT327 - Lecture 9

Wednesday, June 5th, 2019

Definition : Subspace Topology

Let (X, TX) be a topological space, and let Y ⊆ X. We define the subspace
topology on Y as:

TY = {U ∩ Y : U ∈ TX}

The set (Y, TY ) is called a subspace of (X, TX).

That this is a topology is very easy to show. It does everything we want it to.

If U ∈ TY , we say that U is open in Y .

Theorem :

If (X, TX) is a topological space, and let Y ⊆ X and let Bx be a basis for TX .
Then:

By = {B ∩ Y : B ∈ Bx}

is a basis on Y that generates TY .

This is also very easy to show. Taking intersections of Y with the open sets in X
does not disturb any of the properties we want these sets to satisfy.
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Example : Subspaces

1. Subspaces of (in)discrete spaces are (in)discrete.

2. In R7, let A ⊆ R. If 7 ∈ A, then TA is the particular point topology on A,
and if 7 6∈ A then TA is the discrete topology on A.

3. The subspace topology on (0, 1) ⊆ R inherited from Tusual is generated by
the following basis:

B(0,1) = {(a, b) : 0 < a < b < 1}

Here we could also have a and b as rational numbers, as we’ve seen.

4. For all a < b and c < d in R, we have that (a, b)usual ∼= (c, d)usual.

5. Z as a subset of Rusual is discrete. To see this, note that for all z ∈ Z,
z = (z − 1/2, z + 1/2) ∩ Z.

Subspaces that are discrete come up often enough that they have a name.
We say that Z is a discrete subspace of Rusual.

It turns out the property of having a countable discrete subspace is a
topological invariant.

6. Q and Y = {1/n : n ∈ N} ∪ {0} are non-discrete subspaces of Rusual. Y
would be discrete if it didn’t have 0.

7. Consider [0, 1] ⊆ RSorgenfrey. Here, {1} is open. Indeed, {1} = [0, 1]∩ [1, 2).

8. Let Y = {(x, y) ∈ R2 : x2 + y2 = 1} ⊆ R2
usual. TY is generated by ”open

arcs”.

9. S1 \ {(0, 1)} as a subspace of R2
usual is homeomorphic to Rusual.
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The following figure demonstrates what we mean in example 8 by ”open arcs”. Each
arc is of the form U ∩ S1 where U is an open ball in R2. Proving that the open arcs
generate a topology on S1 is hard, and would requires us to use polar coordinates.

R2

And the following figure demonstrates the idea of the homeomorphism between
S1 \ {(0, 1)} as a subspace R2

usual, and Rusual. For every point on the circle, draw the
straight line from {(0, 1)} to that point, and we can map each point on the circle to
the point in R that this line touches. This idea is known as stereographic
projection.

R2

What follows in Ivan’s notes is a long sequence of propositions. Most of these aren’t
too hard. But there’s a few that are important.
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Theorem :

Let (X, TX) be a topological space and let Y ⊆ X. Then the map i : Y → X
given by i(x) = x is continuous.

We recall that theorem that the identity function i : (X, T1)→ (X, T2) is continuous if
and only if T1 ⊇ T2. This fact does not contradict this claim. It doesn’t make sense to
compare the topologies when one is over Y and one is over X.

Theorem :

If f : X → Z is continuous, then f |y : Y → Z is continuous. More concisely, the
restriction of a continuous map to a subspace is continuous.

Theorem :

Suppose (X, TX) is a topological space and let (Y, TY ) be a subspace. If f : Z →
Y is continuous, then f : Z → X is continuous.
More concisely, extending the codomain does not affect continuity.

Now a slightly more interesting/useful theorem.

If we can define a continuous function on A, and a continuous function on B, under
what circumstances can we glue them together to form a continuous function on
A ∪B?

Theorem : Pasting Lemma

Let (X, TX) and (Y, TY ) be topological spaces. Let A,B ⊆ X be either both
closed or both open such that X = A ∪B (they do not have to be disjoint).
If f(x) = g(x) for all x ∈ A ∩B, then h : X → Y defined by:

h(x) =

{
f(x) if x ∈ A
g(x) if x ∈ B

is continuous.

Hereditary Properties

We now continue our studies of the properties of topological spaces. In particular,
how a subspace ’inherits’ a property from its ambient space. These are called
hereditary properties.
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Definition : Hereditary Properties

A topological property ψ is hereditary if for any subspace (Y, TY ) of a topolog-
ical space (X, TX), (Y, TY ) has ψ whenever (X, TX) does.

Example :

1. T2 is hereditary. That is, any subspace of a Hausdorff space is Hausdorff
(as proven in the notes.) Similarly, T0 and T1 are also both hereditary by
a very similar proof.

2. 1st countability and 2nd countability are hereditary.

3. Separability and ccc are not hereditary. To show this, we need a separa-
ble/ccc topological space with a subspace that is not separable/ccc.

Consider R7, which is both separable ({7} is dense) and ccc (no two open
sets are disjoint, forget about an uncountable collection of them.)

Let Y = R \ {7} ⊆ R7. This space is conveniently not ccc nor separable.

Definition :

A topological space (X, TX) is hereditarily ψ if it and all of its subspaces has ψ.

This is a weaker condition that is sometimes useful, particularly when ψ itself is not a
hereditary property.

As an example, the usual topology on R is hereditarily separable.

Theorem :

Every second countable space is hereditarily separable.

Proof. Let (X, TX) be a second countable space. X is immediately separable as
second countable implies separable. Now let Y ⊆ X be a subspace.

Second countability is hereditary, so (Y, TY ) is second countable and hence separable.
�

Theorem :

If ψ is a topological invariant, then ”hereditarily ψ” is also a topological invariant.

This theorem is much easier to prove than it looks. The proof is just a matter of
unravelling definitions.
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