
9. Stronger separation axioms

1 Motivation

While studying sequence convergence, we isolated three properties of topological spaces that are

called separation axioms or T -axioms. These were called T0 (or Kolmogorov), T1 (or Frećhet),

and T2 (or Hausdorff). To remind you, here are their definitions:

Definition 1.1. A topological space (X, T ) is said to be T0 (or much less commonly said to

be a Kolmogorov space), if for any pair of distinct points x, y ∈ X there is an open set U that

contains one of them and not the other.

Recall that this property is not very useful. Every space we study in any depth, with the

exception of indiscrete spaces, is T0.

Definition 1.2. A topological space (X, T ) is said to be T1 if for any pair of distinct points

x, y ∈ X, there exist open sets U and V such that U contains x but not y, and V contains y but

not x.

Recall that an equivalent definition of a T1 space is one in which all singletons are closed.

In a space with this property, constant sequences converge only to their constant values (which

need not be true in a space that is not T1—this property is actually equivalent to being T1).

Definition 1.3. A topological space (X, T ) is said to be T2, or more commonly said to be a

Hausdorff space, if for every pair of distinct points x, y ∈ X, there exist disjoint open sets U

and V such that x ∈ U and y ∈ V .

This property is a very important one. It implies for example that convergent sequences

have unique limit points. It is so fundamental to the way we think about topological spaces

that when the abstract concept of a topological space was first formalized (by Felix Hausdorff),

topological spaces were defined to have this property.

All three of these properties are called “separation axioms” because they codify the extent

to which a topology can distinguish between points in the underlying set, or in other words how

well it can separate points with open sets. Recall that you also proved on a (one-star) Big List

problem that T2 ⇒ T1 ⇒ T0, which should feel satisfying.

In this section we will define and study two stronger separation properties, and perhaps some

variations on them. Since Hausdorff spaces can already separate points with open sets, both of

our properties will involve separating more complicated things with open sets.

A warning before proceeding. The names of these two properties and their corresponding

T -numbers are not precisely agreed upon in the mathematical literature. Traditionally they are
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defined in a way which makes very little sense to me, and more modern works will usually define

them the way I am defining them.

In particular, the definitions of “regular”, “T3”, “normal”, and “T4” given below disagree at

least on some level with Munkres’ textbook and with Counterexamples in Topology. They will

agree, for example, with Wikipedia. So be sure to read the definitions carefully. I will address

these discrepancies and explain my choices as they arise in the sections below.

2 Regularity and the T3 axiom

First, we define a property that lets us separate points from closed sets. To reiterate my

warning from above, please take care to read exactly what I am defining here and note that

other definitions you see (such as in Munkres’ text) may differ slightly, in ways I will explain

below.

Definition 2.1. A topological space (X, T ) is said to be regular if for any x ∈ X and any closed

set C not containing x, there are disjoint open sets U and V such that x ∈ U and C ⊆ V .

Instead of separating points from points (as in a Hausdorff space), we can separate points

from closed sets. Many spaces we have studied so far are regular.

Example 2.2. The following topological spaces are all regular.

1. Any discrete space is trivially regular.

2. Rnusual is regular. To see this, let x ∈ Rn and let C ⊆ Rn be closed and not contain x.

Since x ∈ Rn \ C which is open, there is an ε > 0 such that x ∈ Bε(x) ⊆ Rn \ C.

Now let

U :=
⋃
y∈C

Bε/2(y).

Then U is an open set containing C, and U ∩Bε/2(x) = ∅ (check this!).

Notice that all we used about the reals here is that the topology has a basis of ε-balls.

Later this will tell us that any metric space—any space whose topology has a basis of

ε-balls, essentially—is regular.

3. RSorgenfrey is regular, as we will see shortly.

4. Rco-countable is not regular, since any two nonempty open sets intersect.

5. (Prepare to be annoyed.) (X, Tindiscrete) is vacuously regular since the only nonempty

closed set is X, which contains every point.
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This last example is just awful. Regularity is supposed to be a separation axiom that says

you can do even better than separating points, and yet the indiscrete topology is regular despite

being unable to separate anything from anything else.

This means that the definition we gave above should not be the correct one; it is the morally

correct one, but not the technically correct one. What we actually want is for the property of

being able to separate points from closed sets to be stronger than the property of being able to

separate points from other points. The problem, which should now be apparent, is that points

may not be closed. This brings us to:

Definition 2.3. A topological space (X, T ) is said to be T3 if it is both T1 and regular.

Under this improved definition, it is clear that T3 ⇒ T2, since you can separate two points

x and y by separating x and {y}, the latter of which is always closed in a T1 space.

Example 2.4. Rnusual, RSorgenfrey, and any discrete space are all T3. An indiscrete space with

more than one point is regular but not T3.

Note that we only actually need T0 in the definition above, but in this context T0, T1 and

T2 are all equivalent, as the following proposition shows. We chose to use T1 in the definition

above because it sounds like the property we need, so it is easiest to understand and remember

in that role.

Proposition 2.5. Let (X, T ) be regular. Then (X, T ) is T0 if and only if it is T1 if and only if

it is T2.

Proof. We already know that in any space, T2 ⇒ T1 ⇒ T0. So assume X is regular and T0, and

let x 6= y ∈ X. Then by T0-ness, without loss of generality there exists an open set U containing

x but not y. But then X \U is a closed set that contains y but not x, so by regularity there are

disjoint open sets V1 and V2 containing C (and therefore y) and x, respectively. Therefore X is

T2 (and therefore T1).

With that technicality out of the way, the first result we will see is a useful alternative

characterization of regularity, whose proof is a routine exercise. This is a property that is easy

to take for granted in a space like the reals. If you did the Big List exercise in which you were

asked to prove a version of the Baire Category Theorem, you likely already came across a use

of this property.

Proposition 2.6. A topological space (X, T ) is regular if and only if for every point x ∈ X and

every open set U containing x, there is an open set V such that x ∈ V ⊆ V ⊆ U .

Proof. Exercise. (This is very straightforward. You should draw yourself a picture first, con-

vince yourself that it is obvious from the picture, then write down the proof that the picture

tells you to write down.)
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Next, we will see that the T3 property is actually strictly stronger than the Hausdorff prop-

erty. We already know that T3 ⇒ T2, but we do not yet know that T3 is strictly stronger.

Example 2.7. Let K =
{

1
n : n ∈ N

}
⊆ R. Define a collection of subsets of R as follows:

B = { (a, b) : a < b ∈ R } ∪ { (a, b) \K : a < b ∈ R } .

Then the set B is a basis on R. We already know that the open intervals are closed under

finite intersections, and the sets of the form (a, b) \K are also clearly closed under intersections,

so it is not hard to see that B is a basis. The topology that B generates is called the K topol-

ogy, and we denote R with this topology by RK . Note that the K topology strictly refines the

usual topology (since every basic open set of the usual topology is open in the K topology). In

particular this implies that RK is Hausdorff, since every pair of sets that witnesses that property

in Rusual is also open in RK .

On the other hand, RK is not regular, and therefore not T3. To see this, note that K is a

closed set in RK , but the point 0 and the closed set K cannot be separated by disjoint open sets.

Clearly any set of the form (a, b) containing 0 will intersect K, and therefore if U = (a, b) \K is

a basic open set containing 0, any open interval around an element of K ∩ (a, b) will intersect U .

With some examples and relationships to other properties out of the way, we can now examine

the T3 property itself, and see how it interacts with products, subspaces, etc.

Proposition 2.8. Regularity (and therefore T3) is a topological invariant.

Proof. Exercise.

Proposition 2.9. Regularity is a hereditary property. Since we already know T1 is hereditary,

this also means T3 is hereditary.

Proof. Suppose (X, T ) is regular and A ⊆ X is a subspace. Let x ∈ A and let C ⊆ A be a

closed subset not containing x. By definition of the subspace topology there is a closed subset

D ⊆ X such that C = D ∩ A. Then x /∈ D, and since X is regular we can find disjoint open

subsets U1 and U2 of X containing D and x respectively. Then U1 ∩ A and U2 ∩ A are disjoint

open subsets of A containing C and x, respectively.

Proposition 2.10. Regularity is finitely productive. Since we already know T1 is finitely pro-

ductive, this also means T3 is finitely productive.

Proof. Exercise. (Hint: This is very straightforward if you use the characterization of regularity

given in Proposition 2.6.)

One final nice fact about regularity, that has a particularly nice proof.

Proposition 2.11. Let (X, T ) be a topological space that has a basis of clopen sets. Then (X, T )

is regular.
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Proof. Suppose B is a basis for (X, T ) consisting entirely of clopen sets, fix a point x ∈ X and

a closed set C ⊆ X not containing x. Then x ∈ X \ C which is open, and therefore there is a

basic clopen set B ∈ B such that x ∈ B ⊆ X \ C.

But then C ⊆ X \B, and therefore B and X \B are the desired open sets separating x and

C.

Corollary 2.12. The Sorgenfrey Line (and therefore all of its finite powers and all of their

subspaces) is regular.

Proof. As you proved on a Big List problem, every basic open set [a, b), a < b ∈ R is also

closed.

WARNING: There is no consensus in mathematics about which of the two properties defined

in this section should be called “regular” and which one should be called “T3”. Even from a

historical standpoint, both ways of naming them have merit (you can read about this in this

Wikipedia article on the history of separation axioms).

In particular, note that the choices made here disagree with Munkres’s text. That book

defines “regular” to mean what we call “T3”, and only mentions the T -axioms in a note in which

he says T3 and “regular” mean the same thing. Munkres does not give a name to the property

we call “regular”. Counterexamples in Topology, on the other hand, defines “regular” and “T3”

in exactly the reverse way to how we define them. Finally, if you look things up on Wikipedia,

they agree with our definitions (they go out of their way to call T3 spaces “regular Hausdorff”

spaces sometimes, but usually just give both names).

The motivation for the choice of names in this text is simply that the T -axioms should imply

each other. We will shortly have T4 as well, and it seems correct for this to be true:

T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

No one disagrees on the definitions of T0, T1, and T2/Hausdorff, but using the definitions in

Counterexamples in Topology, T4 would not imply T3, and neither of them would imply T2.

So again, please accept my apology on behalf of the mathematicians of the 20th century. We

dropped the ball on this one. I am doing what I think is right. What you need to take away

from this is that you need to pay attention when you read other sources. Be sure to find out (or

try to deduce) exactly what they mean when they use these terms.

3 Normality and the T4 axiom

At this point, this property should seem like the natural next step.

Definition 3.1. A topological space (X, T ) is said to be normal if for any two disjoint, nonempty,

closed subsets C,D ⊆ X, there are disjoint open sets U and V containing C and D, respectively.
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Example 3.2.

1. Any discrete space is trivially normal.

2. Rnusual is normal. To see this, let C,D ⊆ Rn be closed. For each x ∈ C, find an εx > 0 such

that Bεx(x) ⊆ Rn \D, which we can do since Rn \D is open. Similarly, for each x ∈ D,

find δx > 0 such that Bδx(x) ⊆ Rn \ C.

Then we have two open sets

U :=
⋃
x∈C

Bεx(x) and V =
⋃
x∈D

Bδx(x)

which contain C and D, respectively. These sets might intersect, however, so instead let

U ′ :=
⋃
x∈C

Bεx/2(x) and V ′ =
⋃
x∈D

Bδx/2(x).

These open sets must be disjoint (check this!) and contain C andD, respectively. Therefore

Rnusual is normal.

3. The Sorgenfrey Line is normal.

4. Rco-countable is not normal, again since any two open sets intersect.

5. (Prepare to be annoyed again.) Any indiscrete space is vacuously normal, since there are

no pairs of disjoint closed nonempty subsets.

So again we run into this silly issue that indiscrete spaces are normal. We also run into the

issue that normality does not imply regularity or Hausdorff, since singletons need not be closed.

So again, the fix for this is to define the next T -axiom by including T1-ness as a condition.

Definition 3.3. A topological space (X, T ) is said to be T4 if it is both T1 and normal.

(Again, different texts and sources will disagree with me and with each other on this in the

same way they disagree about regular/T3.)

With this definition in hand, it is easy to see that T4 ⇒ T3, since separating a point and a

closed set is equivalent to separating the corresponding singleton from the closed set.

Just as with regularity, there is an alternative characterization that is useful and worth

pointing out.

Proposition 3.4. A topological space (X, T ) is normal if and only if for every open set U and

every closed set C ⊆ U , there is an open set V such that C ⊆ V ⊆ V ⊆ U .

Proof. Exercise. (Again, this is very straightforward, and should not require any creativity.

Make sure to draw yourself a picture first.)
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Just as we did with regularity and T3, we can now examine the T4 property itself and see

how it interacts with products, subspaces, etc.

Proposition 3.5. Normality (and therefore T4) is a topological invariant.

Proof. Exercise. (Nothing tricky to do here.)

However, normality does not play as nicely as regularity.

Proposition 3.6. Normality is not hereditary.

Proof. We show that any non-normal topological is a subspace of a normal space. This proof

isn’t very satisfying, because the normal space in which our given non-normal space is a subspace

is vacuously normal.

Let (Y,U) be any non-normal topological space, and let∞ be a symbol that is not an element

of Y . The underlying set for the new space we are constructing will be X := Y ∪ {∞}. We

define a topology T on X by T = U ∪ {X}. Take a moment to convince yourself that T is

indeed a topology on X.

First, note that the subspace topology on Y in this space just equals U , so our original

non-normal space (Y,U) is a subspace of (X, T ).

To see that (X, T ) is normal, note that the only open set in this space that contains the new

point ∞ is X itself. In other words, every non-empty closed set in this space contains ∞. This

means that there are no pairs of disjoint nonempty closed sets, and so the space is vacuously

normal.

Coming up with an interesting example of a normal space with non-normal (abnormal?)

subspace is actually quite tricky. A nice example you can look up is in Counterexamples in

Topology (Example 86), though you probably will not get much out of it at the moment. Wait

until after we have learned about ω1...

What is worth doing though is figuring out why the “obvious proof” that normally should

be hereditary fails.

Let (X, T ) be normal and let A ⊆ X be a subspace. Let C1, C2 ⊆ A be disjoint, nonempty

closed subsets in the subspace topology. Then there exist two sets D1 and D2 which are closed

in X such that Ci = A∩Di for i = 1, 2. We want to use the normality of X to separate D1 and

D2, but here is where it breaks down. Can you see why?

All is not lost, however. Just like how we showed separability was not hereditary but on the

Big List you showed that an open subspace of a separable space is separable, there is a similar

patch here.

Proposition 3.7. Every closed subspace of a normal space is normal.

Proof. Exercise. (Pay particular attention to why the problem you found with the “naive”

proof is no longer a problem in this case.)
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Okay, so normality is one of the rare (at least so far) non-hereditary properties. Even more

unusual is the following:

Proposition 3.8. Normality is not finitely productive.

Proof. We show this by showing that the product of the Sorgenfrey Line—which we already

noted is normal—with itself is not normal. This space, often called the Sorgenfrey Square or

similar, is quite an interesting one.

So let (R,S) be the Sorgenfrey line with its usual basis, and consider (R2, T ) where T is the

product topology generated by basis elements that look like [a, b)× [c, d), in the usual way. We

show that (R2, T ) is not normal.

Let A ⊆ R2 be the antidiagonal of the plane. That is, the graph of the function y = −x, or

in other words A = { (x,−x) : x ∈ R }. Take a moment to convince yourself that A is a closed,

discrete subspace of (R2, T ). Now split A into two subsets:

A1 = { (x,−x) : x ∈ Q } and A2 = { (x,−x) : x /∈ Q } .

Then A1 and A2 are closed, disjoint subspaces of (R2, T ), but they cannot be separated by open

subsets of (R2, T ). (Actually showing that these two sets cannot be separated by open sets is

somewhat tricky. I invite you to read the proof in Munkres’ Topology, as Example 3 on page

198. It is quite a novel argument, that assumes (R, T ) is normal and uses this to define an

injection from the power set of A to A, which is impossible.)

The previous example also serves another purpose, which is to distinguish regularity from

normality. Normality certainly seems stronger, but this is the first example we have of a space

that fails to be normal for a non-trivial reason. To be clear, we have shown that (R2, T ) is regular

(since the Sorgenfrey Line is regular and regularity is finitely productive) but not normal. This

demonstrates that normality is a strictly stronger property than regularity.

4 One last result

We end with a nice result involving normality. This sort of theorem, about how some combination

of topological properties implies some other topology property, is the bread and butter of point-

set topology.

This result should seem somewhat odd, in the sense that it is not obvious why the properties

should interact this way, but the proof is very constructive and easy to follow.

Theorem 4.1. Every regular, second countable topological space is normal.

Proof. Suppose (X, T ) is regular and second countable with B a countable basis for T , and let

C and D be disjoint, nonempty, closed subsets of X. We wish to separate these two closed sets

with open sets.
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For each point x in C, by regularity (specifically the characterization from Proposition 2.6)

we can find a basic open set Ux ∈ B that contains x and such that Ux ∩ D = ∅. Similarly for

each y ∈ D find an open set Vy ∈ B that contains y and Vy ∩ C = ∅.
Then we have:

C ⊆
⋃
x∈C

Ux and D ⊆
⋃
y∈D

Vy.

However, we took care to pick each of these Ux’s and Vy’s from the countable basis B, so

each of these unions is really a countable union. Re-indexing the sets, we can write:

C ⊆
⋃
x∈C

Ux =
⋃
n∈N

Un and D ⊆
⋃
y∈D

Vy =
⋃
n∈N

Vn.

It seems as though these two unions are the open sets that work for us, but they might

intersect. This is easily fixed, however. For each n ∈ N, let

U ′
n = Un \

(
n⋃
k=1

Vk

)
and V ′

n = Vn \

(
n⋃
k=1

Uk

)

Each of these newly defined sets is open since we are taking an open set and removing a

closed set. This is the point at which second countability is doing something for us that we could

not have done otherwise. The ability to write each of the unions earlier as countable unions

allows us to only have union together finitely many closed sets at this stage, which is crucial.

By construction, none of the Vk’s intersect C and none of the Uk’s intersect D, and therefore

we still have that

C ⊆ U :=
⋃
n∈N

U ′
n and D ⊆ V :=

⋃
n∈N

V ′
n.

These two open sets U and V , finally, are disjoint. To see this, suppose x ∈ U . Then x ∈ U ′
k

for some k ∈ N. By construction of the U ′
n’s, this means x /∈ V ′

i for all i = 1, . . . , k. On the

other hand if i > k, V ′
i ∩ Uk = ∅, so x /∈ V ′

i . Therefore x /∈ V , and so U ∩ V = ∅, as required.
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