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1 Motivation

The primary reason we introduce this topic is to define order topologies, and in particular the
order topology on some new objects: w; and w; + 1. These spaces provide the best natural
(i.e., not contrived) examples of topological spaces with certain combinations of properties. In
particular, we will see that wj +1 is a non-first countable space that is also very separative (unlike
Reo-countable and Reo finite, Our current go-to examples of non-first countable spaces, neither of
which are even Hausdorff).

w1 is a tricky object to understand, and the sections about it below will contain more detailed
proofs than usual. An optimal approach to defining it would involve defining ordinals from the
ground up, along with other material that, while interesting, is best left to a set theory course.
Instead we will take some shortcuts in order to begin working with w; as quickly as possible.

All of that said, we will still develop the more general notion of a partial order, which is of
independent interest. They crop up in many places in mathematics so it will be useful for you
to see a detailed introduction to them, but in particular we will need them to define and use
Zorn’s Lemma during some important proofs later in the course. The progression from partial

order, to linear order, to well-order is a natural one, and we will follow it in the notes below.

2 Partial orders

Definition 2.1. Let P be a set and let < be a binary relation on P. The pair (P, <) is called
a partial order (or a partially ordered set, or a poset) provided that < has the following three

properties.
1. Reflexivity: p < p for all p € P.
2. Antisymmetry: p < q and g < p implies p = q, for all p,q € P.
3. Transitivity: p < q and q < r implies p < r, for all p,q,r € P.

Some texts will define strict partial orders before partial orders (Munkres’ text does this, for

example), but nothing is gained or lost by doing this.

Remark 2.2. Strictly speaking, a partial order is a set along with a single, fixed relation <,
but we often use variations of this symbol in ways that should be familiar from the example of
the real numbers. For example we will say p < ¢ if p < ¢ and p # ¢, or we might say p > ¢
when we mean ¢ < p. Sometimes we will also use the symbols < and <, or put a subscript on
<, when we want to talk about two different partial orders at the same time without confusing

their respective relations.

Partial orders arise often in mathematics. There are many with which you are already very

familiar as orders, and many with which you are familiar though probably not as orders.
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Example 2.3.

1. (N, <), (Z,<), (Q,<), (R, <), where in each case < is the usual ordering on real numbers.

These are the partial orders, and you are used to thinking about them as orders.

2. The set of English words, when given the usual alphabetical ordering (or “dictionary

ordering”, as it is sometimes called), is a partial order.

3. N with the “divides” relation. That is, the relation < defined by n < m if n|m. Take a

moment to verify that this is a partial order before reading on.

This partial order is very different from the usual ordering on N. In the usual ordering,
given any two natural numbers n and m it is always the case that either n < m or m < n.
This is no longer the case with the divisibility relation, since for example neither of 5 and
7 divides the other.

This phenomenon has a name; if (P, <) is partial order and p, ¢ € IP, we say that p and ¢ are
comparable if p < g or ¢ < p. If p and ¢ are not comparable they are called incomparable.

We will go a little further with these sorts of definitions in the next section.

4. Given a vector space V, the collection of all subspaces of V is a partial order with the
subset relation C. We will see many examples of partial orders using the subset relation,

and we will usually call this the “inclusion” relation.

5. Given a ring R, the collection of all ideals of R is a partial order with the inclusion relation.
(If you do not know what a ring is, feel free to skip this example.) This is of particular
relevance since an application of Zorn’s Lemma to this partial order is used to prove that

every ideal is contained in a maximal ideal, an important result in algebra.

6. Generalizing very much from the previous two examples, given a set X, (P(X),C) is a
partial order. Check this.

In particular, note that the antisymmetry of this partial order is something you use in
proofs all the time; every time you prove two sets are equal by showing containment both

ways, you are using the antisymmetry of this partial order.

7. Since there are no existential quantifiers in the axioms that define partial orders, any
subset of a partial order is again a partial order, using the restriction of the same relation
to the subset. That is to say, you cannot “lose” the property of being a partial order by

losing elements of the set.

This is the sense in which the previous example generalizes the two before it. The partial
order of vector subspaces of V' is simply a subset of the partial order (P(V'),C). Vector

subspaces are just fancy subsets of vector spaces, after all.
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(To use a familiar example, this is not true of vector spaces. The axioms that define vector
spaces do involve existential quantifiers—specifically, closure under the two operations, the
existence of an additive identity, and additive inverses—meaning that, a priori, not every
subset of a vector space is a vector space. This in turn makes the concept of a vector
subspace an interesting one. “Sub-partial orders” are not interesting in and of themselves,
though sub-orders with certain additional existential properties are often considered, such
as the cofinal subsets of directed sets you may have seen in the supplementary notes on

nets and filters.)

8. Let (X, T) be a topological space. Then (7 \ {0}, C) is a partial order. It is not strictly
necessary to exclude the empty set (it would still be a partial order with the empty set),

but it turns out to be more useful this way, as we will see shortly.

(This example is again a subset of the partial order (P(X), C).)

9. If you read the supplementary notes on nets and filters, you came across the concept of a

directed set. These are also called directed preorders, since a preorder is a set equipped

with a binary relation that is reflexive and transitive, but not necessarily antisymmetric.

Preorders are very useful in and of themselves in mathematics.

Here is a lovely example of a preorder that is not a partial order. Let H be the set of
humans on Earth with English names, and for p, ¢ € H define p < g if and only if p’s name
is alphabetically before ¢’s name. This partial order is obviously reflexive and transitive,
but the statement that this partial order is antisymmetric amounts to “any two people

with the same name are the same person”.

Any preorder (P,<) can be “turned into” a partial order by defining the equivalence
relation p ~ ¢ if and only if p < ¢ and ¢ < p, then modding out by it to form (P/ ~, <),
where < here is the induced relation on equivalence classes. (If you have no idea what

that means, don’t worry about it.)

10. Let X = NU{w}, where w is just a symbol that is not a natural number. (w is the lowercase
Greek letter omega, not the English letter “w”.) Define a relation < on X, extending the
usual order on the natural numbers, by declaring that n < w for all n € N. w is essentially
a “point at infinity” here. We will refer to this partial order several times. It is usually
referred to as w + 1 (read “omega plus one”). This order has an important relationship

with sequences, as we will see shortly.

3 Some terminology

In Example 2.3.3 above, we learned some new terminology. For the sake of clarity and ease
of reference, we will formally define this terminology here, along with some other useful terms.

This will also allow us to [sort of] explain how the countable chain condition got its name.
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Throughout all of these definitions, let (P, <) be a partial order.

Definition 3.1. Two elements p,q € P are called comparable if p < q or g < p. If they are not

comparable they are called incomparable.
Definition 3.2. A subset A C P is called a chain if every pair of elements of A are comparable.

So in (R, <), the whole partial order is a chain. In N with the divisibility relation, the set

{7,72,73,74,...} is a chain, but the set of all odd numbers, for example, is not.

Definition 3.3. Two elements p,q € P are called compatible if there is an element r € P such

that r < p and r < q. If they are not compatible they are called incompatible.

Notice that comparability is strictly stronger than compatibility. Indeed, if p < ¢, then
reflexivity of the partial order relation guarantees that p witnesses that p and ¢ are compatible.
It is usually more useful to think about this relationship in the contrapositive: incompatibility
is stronger than incomparability.

To see that this relationship is strict, notice that 9 and 15 are not comparable in the divisi-
bility order on N since neither of them divides the other, but they are compatible since 3 divides
both of them.

Definition 3.4. A subset A C P is called an antichain if every pair of elements of A are

incompatible.

So the set P of prime numbers is an antichain in the divisibility order on N\ {1}, since given
any two distinct primes, no number in this set divides both of them.

Finally, as promised:

Definition 3.5. (P, <) is said to have the countable chain condition (or ccc) if every antichain

m P is countable.

As you can see, this should probably be called the “countable antichain condition”, but the
name has stuck. This definition is more “fundamental” to partial orders than it is to topologies.
The connection between the two is that a topological space (X, 7") has the [topological version
of the] ccc if and only if the poset (7 \ {0}, C) we saw earlier has the [partial order version of
the| ccc. This is the reason we choose to remove the empty set when defining this partial order,

since if it were present it would trivially witness the compatibility of any two open sets.

4 Linear orders

We spent some time talking about general partial orders above—and those concepts will be
useful to us later—but linear orders are much more important to us in topology, because they

come pre-packaged with topologies in a natural way.
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Linear orders will feel much more familiar than partial orders. Our intuition about orders
says that any two elements of an order should be comparable, like is true in the real numbers

for example.

Definition 4.1. A partial order (L, <) is called a linear order if every two elements of L are

comparable. That is, for every a,b € L, either a < b or b < a.

Using our terminology from the previous section, a partial order is a linear order exactly

when the whole set is a chain.
Example 4.2.

1. Again, the familiar orders on real numbers (N, <), (Z, <), (Q, <), (R, <) are all linear

orders.

2. w+1is a linear order. To define it we started with the linear order (N, <), and added an

element that we defined to be comparable to everything.

3. The dictionary order on English words is a linear order, since given two words one is always

alphabetically before the other.

4. N with the divisibility relation is not a linear order, since we have already seen that two

numbers can be incomparable in this ordering.

5. Let (L1,<1) and (L2, <2) be two linear orders. Define the lexicographical order < on
L1 X L2 by:

(al,ag) < (bl,bg) if and only if a1 <1by or a; =b; and as <o bQ.

You should recognize this as the way words are ordered alphabetically. To be clear, if
A is the English alphabet and < is the alphabetical ordering of letters, then (A, <) is a
linear order, and the lexicographical order on A x A defined as above restricts to the usual
way of ordering two-letter words in the dictionary. (That, of course, is where the name

“lexicographical order” came from.)

Your favourite linear order is probably the real numbers. Your favourite topology is probably
also the usual topology on the real numbers. These two things are intimately connected. The
topology on the real numbers is defined in terms of the usual ordering on the real numbers. In
this same way, we can define a topology on any linear order.

First, some notation. These pieces of notation mirror the notation for intervals in the real

numbers.

Let (L, <) be a linear order, and let a,b € L. We define the following notation:

e (a,00)={ze€Ll:a<z}.
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o (—oo,b)={zeLl:x<b}
o (ab)={zeLl:a<z<b}
o (a,bj]={xe€eLl:a<z<b}.
(And so on.)

Definition 4.3. Let (L, <) be a linear order with at least two elements. Define the set
S={(-00,b) :beL}U{(a,00) :a€L}.
Then S is a subbasis on L, and the topology it generates is called the order topology on L.

This essentially (but not precisely) means that the order topology on L is the one generated

by the basis of open intervals, in the sense described above, since for any a < b € L,
(CL, b) = (_007 b) N ((1, OO)

and therefore (a,b) is in the basis generated by S. This is just the same as happens in Rygyal.

Before going any further, we establish some simple examples.
Example 4.4.

1. The order topology on (R, <) is the same as the usual topology. We already know this,

since the usual topology is generated by the basis of open intervals.

2. The order topology on (Q, <) is the same as its subspace topology inherited from R gyal-
This is easy to see, but not trivial, since for example (—7m,7) N Q is an open set in the
subspace topology inherited from Rygua, but is not a basic open interval in the order

topology on Q. It is, of course, a union of basic open intervals.

3. The order topology on (N, <) is also the same as its subspace topology inherited from
Ruysual, which is to say that it is discrete. Indeed, for example, we have that {7} = (6, 8).

(Remember that here we are talking about intervals in the linear order. So this is true

since 7 is the only element of N strictly above 6 and strictly below 8.)

4. Consider the unit square [0,1] x [0,1]. One way of looking at this set is as the Cartesian
product of two linear orders, and thus a topology on it can be obtained by using the order
topology given by the lexicographic ordering on the product, as described in Example
4.2.5.

This topology is extremely different from the subspace topology induced from R? We

usual®

will explore this a bit on the Big List.
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Now some examples to illustrate the importance of w + 1.
Example 4.5.

1. First, a reminder of an example from earlier in the course. Consider the two sets
X={1:neN}u{o} and Y={2:neN}u{-7}.

As we have seen in previous sections of the lecture notes, Y is a discrete subspace of Rgual-
X, however, is not a discrete subspace; we know that any open interval in R containing 0
also contains a tail of the sequence of %’s, and therefore {0} is not open in the subspace

topology on X.

In particular, X and Y are not homeomorphic as subspaces of Rygyal-

2. Now consider the same sets X and Y but with their order topologies. They are both, after
all, linear orders (when equipped with the usual ordering on real numbers).
In both spaces with their order topologies, the %’s are still open as singletons since { %} =

11
(o 7=1)-
However, in both of these spaces, the remaining point is not open. In X, the only basic
open sets containing 0 are of the form (—oco,b) = [0,b) for some b € {1 : n € N}, and
any such set contains all but finitely many elements of X. The same is true in Y, since
again the only open sets containing —7 must be of the form (—o0,b) = [-7,b) for some
be { % :neN }
. . . s . ) 1 .

The proper way to describe this situation is that in both spaces, the sequence { —:neN }
converges to the lower point. The order topology does not care that in Y we “moved” one
point over by seven units. It only cares about where the element falls in the order on the

set. With their order topologies, these two spaces are homeomorphic.

Both of these spaces are homeomorphic to the set X with its subspace topology from Rysual
(via the identity function from X to itself). We have a better way of describing this space,

however. This is illustrated by the next example.

3. Consider w + 1 with its order topology. {n} is open for all n € N for the same reason this
was true in N with its order topology. However in this space we have the extra element w
above everything. A basic open set containing w must be of the form (a,00) = (a,w] for

some a € N, and therefore any such set contains all but finitely many members of N.

We conclude that in w + 1, the sequence 1,2,3,4,... converges to w (as does any strictly
increasing sequence in N). Furthermore, w + 1 is homeomorphic to the spaces X and Y

with their order topologies from the previous example.

This is why w + 1 is so important. It is a “model” space that is homeomorphic to the
subspace topology on a convergent sequence along with its limit point (in any sufficiently

separative topological space).
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Order topologies are particularly useful for us to study because although they can be a little
weird or counterintuitive, but they are still very well-behaved with respect to separation, as the

following proposition illustrates.

Proposition 4.6. A linear order with its order topology is Hausdorff, T3 and Tj.
(Actually it turns out that linear orders are completely normal, or equivalently hereditarily

normal.)

Proof. We first show that linear orders are Hausdorff. Suppose (L, <) is a linear order with its
order topology, and let p and ¢ be distinct elements of L, and assume without loss of generality
that p < ¢. If there exists an element a such that p < a < ¢, then (—o00,a) and (a,oc0)
separate the two points, and we are done. If there is no such a, then (—oo,q) = (—o0,p| and

(p,0) = [g,00) are disjoint open sets containing p and ¢, respectively.

We next establish regularity. Suppose C' C L is a non-empty closed set and p € L\ C. Then
there is an open interval (a,b) such that p € (a,b) C L\ C (since the open intervals are a basis
for the order topology).

From this point onward we will use a similar argument to the previous one. If there are
elements u,v € L such that a < u < p < v < b, then the open sets (—oo,u) U (v,00) and (u,v)
are disjoint and contain C and p, respectively.

If there is no such uw and/or no such v, we can easily adjust our sets in a similar way as
above. For example if no such u exists, we can use (—oo,p) U (v,00) = (—00,a] U (v,00) and

(a,v) = [p,v), and so on.

The proof that linear orders are normal is tedious and not particularly instructive, so we
will omit it from these notes. You are welcome to look into it yourself if you are curious, but I
promise you will not be missing anything if you don’t. One interesting thing about this proof is
that it necessarily uses the Axiom of Choice. Without Choice, there are linear orders that are

not normal as topological spaces. O

5 Well-orders

Now we move on to a particularly nice and well-behaved class of linear orders. These types of
orders are fundamental to the structure of mathematics (the Axiom of Foundation is essentially
a statement about well-orders). They also have an intimate connection to induction, in the
sense that they allow us to generalize induction to larger contexts. (We will not be generalizing

induction in this course, except possibly on the Big List...)

Definition 5.1. A partial order (W, <) is said to be a well-order if every non-empty subset of
W has a <-least element. That is, for every non-empty S C W there is an a € S such that
a<zforalxzes.
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We will often just say “least” rather than “<-least”, when the order relation is clear from

context. Also, given a subset S of a well-order W, we will denote its least element by min(.5).
Example 5.2.
1. (N, <) is a well-order.

2. (R, <) is not a well-order, since for example R itself has no least element. Similarly Q and

Z with their usual orders are not well-orders.
3. w+1is a well-order. Make sure you believe this before reading on.

4. Given two well orders (Wy,<;) and (W2, <2), the lexicographical order on their product
Wy x Wo is a well-order. Check this as well.

5. Every subset of a well-order is again a well-order, under the restriction of the same relation.
This is not immediate, as in the case of partial or linear orders, because the definition of a
well-order does involve existential quantifiers. It is true though, since a subset of a subset
of a well-order (W, <) is itself a subset of W.

The following proposition collects together some elementary facts about well-orders. Some
of these require almost no proof (and most will be left as exercises) but the purpose of this
proposition is to serve as a useful reference for almost all facts about well-orders the reader will

need.

Proposition 5.3. Let (W, <) be a well-order.

~

. Bvery well-order is a linear order.

2. Every non-empty S C W has a unique least element.

3. There is a least element, min(W), of W.

4. If W has two or more elements, there is a second least element of W.

5. If W has three or more elements, there is a third least element of W.

6. If W is infinite, there is a “copy” of the well order N at the “bottom” of W.

7. A linear order (W, <) is a well-order if and only if it contains no infinite, decreasing

chains.
8. Every non-empty interval (a,b) in a well-order is really of the form [c,b), for some c € W.
Proof.

1. If p,q € W are distinct elements, then the subset {p, ¢} C W must have a least element,

from which it follows that p and ¢ are comparable.

10
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2. Exercise.
3. This is immediate from the definition of a well-order.
4. This is simply the least element of W \ {min(WW)}.
5. This should now be clear.
6. Exercise.
7. Exercise.
8. Let ¢ = min(a, b).
O

With this definition established and explored a bit, we are ready to move into weird territory.

6 w1

w1 is a specific well-order that is quite useful to study in many contexts. The definition of this
space is going to be unusual. There are many approaches to defining it, some more rigorous
than others. A proper treatment would involve defining ordinals, which is more work than we
need to do for a topology course. Instead, we are going to introduce it in a way that will not
seem well-defined at first (though, of course, it is a well-defined object).

In particular, we are going to work with w; via the properties it satisfies only. We are not
going to explicitly “construct” it. This will also probably seem weird at first.

We are going to define w; as a particular subset of an uncountable well-order. At the
moment, you do not have any evidence that such a thing even exists; the only well-orders we
have explicitly mentioned thus far are countable. The existence of such an order is something
we are going to take as axiomatic, because ultimately it ¢s axiomatic in mathematics, via the

following fact.

Theorem 6.1 (Well-Ordering Principle). Let X be a set. Then there exists a binary relation <
on X such that (X, <) is a well-order.

In other words, any set can be well-ordered. This theorem is actually equivalent to the Axiom
of Choice, as we will see soon in this course. So, for the moment, we will not prove it.

Note that this result does not say that any order or any linear order is a well-order. Just that
every set can be well-ordered. This should strike you as highly counterintuitive. For example,

you almost certainly cannot imagine a well-ordering of R, or weirder yet of R?.

Corollary 6.2. There are uncountable well-orders.

11
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Having established that there are uncountable well-orders, we are going to fix one of them

and define wi to be a particular subset of it.

Definition 6.3. Let (W, <) be an uncountable well-order. For each x € W, define the set of

predecessors of x in W in the natural way:
pred(z) :={yeW :y<uz}.
Then, define
w1 ={a €W : pred(«) is countable } .

This definition looks “non-canonical”, in the sense that it seems like if we start with different
uncountable well-orders, we might get different objects. That is true in a superficial sense, but
no matter which well-order you start with, the “version” of w; you define will be the same as
an order. Since we only care about it as an order, there will be no problem for us. (In a more
set-theoretic context wy is explicitly constructed, so there is no such ambiguity.)

From this definition alone we are going to point out some simple properties of wy, and then
you should always think of it as the well-order that has these properties. They will do all the

work. You will rarely have to refer to the definition specifically.
Proposition 6.4. Some facts about w;.
1. w1, equipped with the restricted ordering from W, is a well-order.
2. wy is closed downwards. That is, for every a € wy, pred(a) C wy.
3. wq s uncountable.
4. For all a € wy, pred(«) is countable.

5. (Key property) Every countable subset of wy is bounded above. That is, if S C wq is
countable, then there is an a € wy such that B < « for oll 5 € S.

Proof.
1. This follows from Example 5.2.5.

2. If @ € w; and 8 € pred(«), then pred(8) C pred(«) by the transitivity of the ordering,
and therefore pred(f) is countable.

3. Suppose for the sake of contradiction that w; is countable. By assumption the well-order
(W, <) is uncountable, and so W'\ w; is non-empty, and therefore has a least element. Call

that element o := min(W \ wy).

a ¢ wy, and therefore by definition of w; it must be that pred(«) is uncountable. However,
it is easy to see that pred(a) C wi, by the minimality of a. If w; is countable then this set

is certainly also countable, a contradiction.

12
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4. This is immediate from the definition of w;. (We just want to list it with the other

properties, for ease of reference.)

5. Suppose S C wj is countable and non-empty. By definition of wy, pred(s) is countable for
each s € S. Then
S :=8U U pred(s)
seS
is countable, being a countable union of countable sets. Therefore we can find an element
a € wy \ 9, and this « is above every element of S (if it was not above some s € S it

would be an element of pred(s), which it cannot be).
O

These few properties, particularly the last one, encapsulate most of what we will need to

know about w; as a well-order.

From this point forward, we will consider w; as a topological space with its order topology,

and analyze some of its topological properties. Here are a few of them.

Proposition 6.5. wy is Hausdorff, T5, Ty. (In fact, it is completely normal.)

Proof. w1 is an order topology, so this just follows from Proposition 4.6. O
Proposition 6.6. w; is not separable (and therefore not second countable).

Proof. This follows almost immediately from Fact 6.4.5. Suppose D C wj is countable. Then D
is bounded above, so let a € w; be above every element of D. But then («, c0) is a non-empty

open subset of wy that contains no element of D. Therefore, D is not dense. O
Proposition 6.7. w; is first countable.

Proof. Fix a € w;y. Notice that for x € pred(a), the set (x,q] is a basic open set. Indeed,
(r,a] = (xr,a + 1), where o + 1 is common notation for the “next least” element after a.
Specifically, « + 1 := min(w; \ (pred(a) U {a}))

Now By = {(z,a] : = € pred(a) } is a local basis at «, and it is countable since pred(«) is

countable. O

These results alone should convince you that w; is a worthwhile object for us to study. We
have not had many interesting examples of non-separable spaces. We also have not had any
examples of spaces that are first countable but not second countable other than the Sorgenfrey
line. This space is very well-behaved from a separation standpoint, being Ty (and actually

hereditarily 74), but relatively poorly-behaved from the point of view of countability properties.

Here are some other topological facts, whose proofs will be left as exercises on the Big List:

13
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Fact 6.8.
1. wy 1is not discrete (this may not be obvious at this point).
2. w1 does not have the countable chain condition.

3. wy is not homeomorphic to any subspace of Rysuai. In fact, any continuous function f :

w1 — R is eventually constant, and so there are not even any continuous bijections here.

7 w+1

Earlier we learned about the order w + 1, which we obtained by taking the usual order on the
natural numbers and adding a new element above everything. If we do the same thing to wq,

we get wy + 1, whose formal definition is as follows.

Definition 7.1. Let Q) be a symbol that is not an element of wi. Then we define w1 + 1 :=
w1 U{Q}. We define an ordering on wi+1 by extending the ordering on wy, declaring that o < €

for all a € wy.

w1 +1, as a topological space with its order topology, is a great one. Here are some properties

of this space.

Proposition 7.2. w; + 1 is Hausdorff, T3, Ty. (In fact, it is completely normal.)

Proof. 1t is an order topology, so this again just follows from Proposition 4.6. 0
Proposition 7.3. wy + 1 is not separable (and therefore not second countable).

Proof. The same basic idea as in the proof of Proposition 6.6 works here with a minor modifi-
cation. If S C w; + 1 is a countable set that does not contain €2, the proof is identical.

If S does contain 2, let S” = S\ {Q2}—which is also countable—and let « be an upper bound
for S” in wy. The set (a,00) used in the earlier proof is replaced by («,€2), and this open set

contains no element of S. O

This next proposition is the real payoff here. It is the reason we bother to define wy + 1 in

this course.
Proposition 7.4. w; + 1 is not first countable.

Proof. All the elements of wy have the same countable local bases as in the proof of Proposition
6.7. So our only hope is to show that {2 does not have a countable local basis. We will actually
show that there is no countable local basis consisting of basic open sets, which will of course
suffice to prove the result. Note that any basic open set containing 2 must be of the form (a, 2]

for some « € wy.
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10. Orders and w1 10.7. wy + 1

Suppose B = { (an,§2] : n € N} is a countable collection of basic open sets containing €.
We want to show that B is not a local basis at €.

The set S = {a,, : n € N} Cw; is countable, and therefore bounded above. Let o € wy be
above every element of S. Then (o, ] is a basic open set containing €2, but which contains no

element of B as a subset. Therefore, B is not a local basis at €. ]

So there we have it. w;+1 is the first interesting non-first countable space we have been able
to define. Our original examples of a non-first countable spaces were Reo countable and Reo-finite,
which are both highly pathological spaces. They are not even Hausdorff. w; + 1 on the other
hand is very well-behaved from a separation standpoint, being normal, and relatively natural
to define (if you are already thinking about order topologies). It also does not feel as though it
was invented specifically to break first countability, the way the Arens-Fort space that many of

you discovered while doing an earlier Big List problem seems to be.
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