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1 Motivation

We have learned that the countable chain condition behaves unusually with respect to products.

In fact, we learned that the question of whether the ccc is finitely productive is independent of

the usual ZFC axioms. This means that given an arbitrary collection of ccc spaces, there is no

hope of deciding whether their product is ccc.

With that said, there are still some partial results that are available to us. The first section

of this note will outline the most important one of these, and some of its corollaries. The

results in this section do not rely on any additional set-theoretic assumptions. They do rely on

understanding the definition of a general (i.e., infinite) product of topological spaces, however.

These are introduced in section 14 of the lecture notes. Students are welcome to do some

independent research to learn these definitions if they want to understand this note before we

get to that section.

The second section of this note will outline, in relatively simple terms, why the following

statement is consistent with the usual ZFC axioms.

(1) Any finite product of ccc spaces is ccc.

In fact, a significant strengthening of this statement is consistent with ZFC—any (not nec-

essarily finite) product of ccc spaces is ccc. This is the final result in the second section. In

addition to needing to know how arbitrary products of topological spaces are defined, the reader

will need to know what partial orders and ω1 are in order to fully understand this section. That

material is covered in section 10 of the lecture notes.

At the time of this writing, this note does not outline the proof that the Continuum Hy-

pothesis implies the existence of a ccc space whose square is not ccc. This result is the usual

way one shows that the negation of (1) is consistent with ZFC. This proof is somewhat beyond

the scope of the course, but I will add it if I can formulate a straightforward treatment.

2 A partial result about the productivity of the ccc

2.1 Preliminaries

Recall the following definitions and facts from throughout the course.

Definition 2.1. A topological space (X, T ) is said to have the countable chain condition if any

collection of pairwise disjoint, nonempty, open subsets of X is countable.

Notation. Given a set A, we denote by [A]<ω the set of all finite subsets of A. More formally:

[A]<ω := {F ⊆ A : F is finite } .

(Note that we previously used the notation Fin(A) for this, but the notation here is more

standard throughout set theory.)
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Definition 2.2. Let A be a set. A collection A ⊆ [A]<ω is called a ∆-system if there is a finite

set r ∈ [A]<ω (which may be empty) such that a ∩ b = r for all distinct a, b ∈ A. The set r is

called the root of the ∆-system.

Theorem 2.3 (∆-System Lemma). Let A be an uncountable set, and let A ⊆ [A]<ω be an

uncountable collection of finite subsets of A. Then there is an uncountable B ⊆ A that is a

∆-system.

2.2 Results

Theorem 2.4. Let I be a nonempty indexing set, and let { (Xα, Tα) : α ∈ I } be a family of

topological spaces such that
∏
α∈F Xα has the countable chain condition for all F ∈ [I]<ω. Then∏

α∈I Xα has the countable chain condition.

Proof. Let X =
∏
α∈I Xα be the product of the given spaces, with its product topology. The

theorem is tautological if I is finite. We first treat the case where I is uncountable.

Assume for the sake of contradiction that U is an uncountable collection of pairwise disjoint,

nonempty, open subsets of X. We may assume without loss of generality that each of the sets

in U are basic open subsets of the product topology.

By definition of the product topology, for each U =
∏
α∈I Uα ∈ U , there is a finite set FU ⊆ I

such that Uα 6= Xα if and only if α ∈ FU .

First, we present a useful lemma:

Lemma 2.5. Let U =
∏
α∈I Uα and V =

∏
α∈I Vα be disjoint, nonempty, basic open subsets of

X. Then FU ∩ FV 6= ∅, and moreover there is some α ∈ FU ∩ FV such that Uα ∩ Vα = ∅.

Proof. Assume U and V are disjoint and nonempty. First, suppose for the sake of contradiction

that FU ∩ FV = ∅. Then we can pick...

• ...a point aα ∈ Uα for all α ∈ FU ,

• ...a point bα ∈ Vα for all α ∈ FV , and

• ...a point cα ∈ Xα for all α ∈ I \ (FU ∪ FV ).

Then the point x ∈ X defined by:

πα(x) =


aα α ∈ FU
bα α ∈ FV
cα otherwise

is in U ∩ V , contradicting the assumption that U and V are disjoint.

Next, let F = FU ∩ FV and suppose for the sake of contradiction that Uα ∩ Vα 6= ∅ for all

α ∈ F . Then we can pick...
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• ...a point aα ∈ Uα ∩ Vα for all α ∈ F ,

• ...a point bα ∈ Uα for all α ∈ FU \ F ,

• ...a point cα ∈ Vα for all α ∈ FV \ F , and

• ...a point dα ∈ Xα for all α ∈ I \ (FU ∪ FV ).

Then the point x ∈ X defined by

πα(x) =



aα α ∈ F

bα α ∈ FU \ F

cα α ∈ FV \ F

dα otherwise

is in U ∩ V , again contradicting the assumption that U ∩ V = ∅. This completes the proof of

the lemma.

Getting back to the proof of the theorem, apply the ∆-system lemma to the collection

A = {FU : U ∈ U } to find an uncountable ∆-system B ⊆ A. Let r be the root of this ∆-

system.

Claim. r 6= ∅.

Proof. Suppose for the sake of contradiction that r = ∅. Given two sets F,G ∈ B, let U and V

be elements of U such that FU = F and FV = G (U and V need not be unique since the map

U 7→ FU need not be injective). Since r = ∅, this means F ∩ G = FU ∩ FV = ∅, which would

in turn imply that U ∩ V 6= ∅ by the lemma, contradicting the assumption that U consists of

pairwise disjoint sets. This finishes the proof of the claim.

Let U ′ = {U ∈ U : FU ∈ B }. For each U =
∏
α∈I Uα ∈ U ′, define:

p(U) =
∏
α∈r

Uα.

(“p” for “projection”, since p is essentially projecting each U ∈ U ′ to the coordinates in r.)

Finally, let V = { p(U) : U ∈ U ′ }. So V is a collection of open subsets of
∏
α∈rXα, a space

which is ccc by hypothesis, since r is finite.

Claim. The map U ′ → V given by U 7→ p(U) is injective.

Proof. Let U =
∏
α∈I Uα and V =

∏
α∈I Vα be given elements of U ′, and note that by definition

of U ′, we have that FU ∩ FV = r.

Then if U 6= V and p(U) = p(V ), we would have that Uα = Vα for all α ∈ r = FU ∩ FV . By

the lemma, this would imply that U ∩ V 6= ∅, contradicting the assumption that U consists of

pairwise disjoint sets.
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It follows from the last claim that V is uncountable, since U ′ is uncountable. By hypothesis,∏
α∈rXα is ccc, and so in particular there must exist p(U), p(V ) ∈ V such that p(U)∩p(V ) 6= ∅.

But then, by the lemma again, we could find a point in X inside U ∩V , again contradicting the

assumption that U consists of disjoint sets. Therefore, the whole product space X must have

the countable chain condition.

Finally, we treat the case in which I is countable, which is much simpler than the previous

case. Again, assume for the sake of contradiction that U is an uncountable collection of pairwise

disjoint, nonempty, open subsets of X. For each U ∈ U , let FU ⊆ I be as in the previous case.

There are only countably many finite subsets of I, and therefore by the pigeonhole principle

there must be a finite F ⊆ I and an uncountable U ′ ⊆ U such that FU = F for all U ∈ U ′. In

other words, πα(U) = Xα for all α ∈ I \ F and all U ∈ U ′.

We are now in essentially the same situation as in the previous proof (but now with F

instead of r). For each U =
∏
α∈I Uα ∈ U ′, let p(U) =

∏
α∈F Uα. Then the mapping U 7→ p(U)

is injective, and therefore since
∏
α∈F Xα is ccc by hypothesis, there must exist U, V ∈ U ′ such

that p(U) ∩ p(V ) 6= ∅. But then, by the lemma, this implies that U ∩ V 6= ∅, contradicting the

assumption that U consists of pairwise disjoint sets.

It follows easily from the theorem that if φ is a topological property such that:

• φ is finitely productive;

• φ implies the ccc,

Then any product of topological spaces with φ will also have the ccc. In particular:

Corollary 2.6. Let { (Xα, Tα) : α ∈ I } be a family of separable spaces. Then their product∏
α∈I Xα has the countable chain condition.

This result allows us to easily construct ccc, non-separable spaces. For example, if I is an

indexing set with cardinality strictly larger than R, then {0, 1}I is ccc but not separable.

Another notable corollary:

Corollary 2.7. If, under some additional set-theoretic assumptions, we can prove that the ccc is

finitely productive, we will also have shown that, under those assumptions, the ccc is arbitrarily

productive.

In the next section, we will use this corollary to prove that under a certain additional set-

theoretic assumption the ccc is arbitrarily productive.
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3 Martin’s Axiom implies that the ccc is productive

Martin’s Axiom (MA) is a statement that is independent of the usual ZFC axioms of set theory.

It is a useful tool for proving many things, including some independence results. It has many

forms, but by far the most useful way to think about it is as a statement about partial orders.

We have seen what a partial order is (in section 10 of the lecture notes), but we will need a

few more definitions before we can see the statement of Martin’s Axiom. Some of these we have

seen before, and some of them are partial order versions of things we have seen in a topological

context.

3.1 Preliminaries

Definition 3.1. Let (P,≤) be a partial order.

• Two elements p, q ∈ P are called compatible if there is an element r ∈ P such that r ≤ p

and r ≤ q. If they are not compatible they are called incompatible. A subset A ⊆ P is

called an antichain if every pair of elements of A are incompatible.

• (P,≤) is said to have the countable chain condition (or ccc) if every antichain in P is

countable.

• A subset D ⊆ P is called dense in P (or simply dense if the partial order in question is

clear from context) if for every p ∈ P there is a d ∈ D such that d ≤ p.

• A strict, non-empty subset F ⊆ P is called a filter on P if the following conditions hold:

1. F is closed upwards. In other words, if p ∈ F and p ≤ q, then q ∈ F .

2. F is directed. In other words, if p, q ∈ F , then there is a r ∈ F such that r ≤ p and

r ≤ q. Another way to say this is that every two elements of F are compatible, and

that this compatibility is witnessed by an element of F .

With these definitions in place, we can state Martin’s Axiom. To be a little more precise,

we are going to state what is usually called MA(ω1).

(MA(ω1))

Let (P,≤) be a partial order with the countable chain condition, and let

{Dα : α ∈ ω1 } be a collection of non-empty, dense subsets of P. Then

there is a filter G on P such that G ∩Dα 6= ∅ for all α ∈ ω1.

This statement is independent of the usual axioms of ZFC (the proof of this is, sadly, well

beyond the scope of this note and our course). In other words, if ZFC is consistent, then

assuming MA(ω1) is true cannot lead to a contradiction, and neither can assuming it is not

true. It is with the help of this and many other statements like this that mathematicians can

prove certain statements are consistent with ZFC.
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3.2 Results

We will now prove that under the assumption that (MA(ω1)) is true, any product of ccc topo-

logical spaces is ccc. We start with a preliminary lemma.

Lemma 3.2. Assume (MA(ω1)).

Let (X, T ) be a ccc topological space, and suppose {Uα : α ∈ ω1 } is a collection of non-

empty open subsets of X. Then there is an uncountable A ⊆ ω1 such that for any α, β ∈ A,

Uα ∩ Uβ 6= ∅.

Proof. For each α ∈ ω1, define

Vα =
⋃
β>α

Uβ.

These new open sets form a decreasing chain of sets, in the sense that if α < β, then Vβ ⊆ Vα.

We first show that this chain “stabilizes” at some point. More specifically, that there is an

α ∈ ω1 such that for all β > α, Vβ = Vα. Indeed, if no such α exists, then for every β ∈ ω1

we can find a γβ > β such that Wβ := Vβ \ Vγβ 6= ∅. Any two sufficiently far-apart sets of this

form are disjoint: if α ∈ ω1 and β > γα, then Wα ∩ Vγα = ∅ while Wβ ⊆ Vβ ⊆ Vγα . Therefore,

proceeding this way, we can construct an unbounded—and therefore uncountable—subset of

ω1 and a corresponding uncountable collection of disjoint open subsets of X—the associated

Wα’s—contradicting the assumption that X has the ccc.

So, fix an α ∈ ω1 after which the chain of Vα’s stabilizes, as in the previous paragraph.

Consider the partial order (P,⊆), where

P = {P ⊆ Vα : P is open and non-empty } .

P ⊆ T , and so P has the ccc (as a partial order) since (X, T ) has the ccc (as a topological space).

We want to apply MA(ω1) to P, and so we need some dense subsets of P to work with.

For each β ∈ ω1, define a set Dβ ⊆ P by:

Dβ = {P ∈ P : P ⊆ Uγ for some γ > β } .

Claim. For all β ∈ ω1, Dβ is dense in P.

Proof. Fix a β ∈ ω1. By definition of α, we have that Vα ⊆ Vβ (if α < β then in fact we have

Vα = Vβ, while if β < α then this follows from our early observation that these sets form a

decreasing chain).

Fix an arbitrary P ∈ P. We want to find a Q ∈ Dβ such that Q ⊆ P . From our observation

just above, it follows that P ⊆ Vβ, and in particular that P ∩ Vβ 6= ∅. In other words, recalling

the definition of Vβ

P ∩

⋃
γ>β

Uγ

 6= ∅,
whence it follows that P ∩ Uγ 6= ∅ for some γ > β. Let Q = P ∩ Uγ . Then, to summarize:
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• Q is open, and Q ⊆ P .

• Q ⊆ Uγ and γ > β, and so Q ∈ Dβ.

This completes the proof of the claim.

Finally, we are in a position to apply (MA(ω1)). Indeed, let G ⊆ P be a filter such that

G ∩Dβ 6= ∅ for all β ∈ ω1.

We will define the subset A ⊆ ω1 that we are looking for using G in the following way:

A := { γ ∈ ω1 : P ⊆ Uγ for some P ∈ G } .

Claim. A is uncountable.

Proof. We will show that A is unbounded in ω1, from which it follows that it is uncountable.

Indeed, fix an arbitrary β ∈ ω1. By construction, G ∩ Dβ 6= ∅, so let P be an element of this

intersection. By definition of Dβ, this means there is a γ > β such that P ⊆ Uγ . But then

γ ∈ A, completing the proof of the claim.

Claim. For any α, β ∈ A, Uα ∩ Uβ 6= ∅.

Proof. This follows immediately from the fact that G is a filter, and is therefore directed. Indeed,

let α, β ∈ A. By definition of A, this means there are Pα, Pβ ∈ G such that Pα ⊆ Uα and Pβ ⊆ Uβ.

But G is a filter, and so Pα ∩ Pβ 6= ∅, from which it follows that Uα ∩ Uβ 6= ∅.

The preceding claim is a bit technical, but having proved it we can now get the result we

want very easily.

Theorem 3.3. Assume (MA(ω1)).

Then any product of ccc topological spaces is ccc.

Proof. By Corollary 2.6, it suffices to show that the product of any two ccc spaces is ccc.

Let X and Y be ccc topological spaces, and assume for the sake of contradiction that

{Wα : α ∈ ω1 } is a collection of pairwise disjoint, non-empty open subsets of X×Y . Shrinking

each one if necessary, we may assume without loss of generality that Wα = Uα × Vα, where

Uα ⊆ X and Vα ⊆ Y are open sets.

Applying the lemma to the collection {Uα : α ∈ ω1 }, we find an uncountable A ⊆ ω1 such

that for any α, β ∈ A, Uα∩Uβ 6= ∅. Fix arbitrary α 6= β ∈ A. Then Uα∩Uβ 6= ∅ as we just said,

but on the other hand (Uα × Vα) ∩ (Uβ × Vβ) = Wα ∩Wβ is empty by assumption. This forces

Vα ∩ Vβ = ∅. Since α and β were arbitrary, this means {Vα : α ∈ ω1 } is a pairwise disjoint

collection of non-empty open subsets of Y , contradicting the assumption that Y has the ccc.
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