AX-SCHANUEL AND O-MINIMALITY

JACOB TSIMERMAN

1. INTERPRETING AX-SCHANUEL GEOMETRICALLY

The goal of this note is to give a geometric interpretation of the Ax-Schanuel theorem, and to give a model-theoretical proof of it. To start, lets recall the

Theorem 1.1 (Ax-Schanuel). Let $f_1, \ldots, f_n \in \mathbb{C}[[t_1, \ldots, t_m]]$ be power series that are \mathbb{Q} - linearly independent modulo \mathbb{C} . Then we have the following inequality:

$$\dim_{\mathbb{C}} \mathbb{C}(f_1, \dots, f_n, e(f_1), \dots, e(f_n)) \ge n + rank \left(\frac{\partial f_i}{\partial t_j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

where $e(x) = e^{2\pi i x}$ and $\dim_K L$ is the transcendence degree of L over K.

To see the geometric implication of this theorem, lets restrict to the case where the power series f_i are convergent in some open neighborhood $B \subset \mathbb{C}^m$. Note that by the Seidenberg embedding theorem¹, it is sufficient to look at this case. Define the uniformizing map

 $\pi_n: \mathbb{C}^n \to (\mathbb{C}^{\times})^n, \pi_n(x_1, \dots, x_n) = (e(x_1), \dots, e(x_n))$

and the subset $D_n \subset \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ to be the set

$$(\vec{x}, \vec{y}) \in D_n \iff \pi_n(\vec{x}) = \vec{y}.$$

Then we have a well defined map $\vec{f}: B \to D_n$ given by

$$\vec{f}(t_1,\ldots,t_m) = (f_1(t_1,\ldots,t_m),\ldots,f_n(t_1,\ldots,t_m),e(f_1(t_1,\ldots,t_m)),\ldots,e(f_n(t_1,\ldots,t_m))).$$

Define $U \subset D_n$ to be the image of \vec{f} . U is then a complex analytic space, and it is easy to verify that

$$\dim_{\mathbb{C}}(U) = \operatorname{rank}\left(\frac{\partial f_i}{\partial t_j}\right)_{\substack{1 \le i \le n\\ 1 \le j \le m}}$$

and denoting the Zariski closure of U by U^{zar} ,

$$\dim_{\mathbb{C}}(U^{zar}) = \dim_{\mathbb{C}} \mathbb{C}(f_1, \dots, f_n, e(f_1), \dots, e(f_n)).$$

¹Thanks to Martin Bays for pointing this out

JACOB TSIMERMAN

Moreover, denote by π_a and π_m the projections onto \mathbb{C}^n and $(\mathbb{C}^{\times})^n$ respectively². Then the linear independence condition on the f_i is equivalent to saying that $\pi_a(U)$ does not lie in the translate of a proper \mathbb{Q} -linear subspace of \mathbb{C}^n , or that $\pi_m(U)$ does not lie in a coset of a proper subtorus. We can thus rephrase the Ax-Schanuel theorem geometrically as follows:

Theorem 1.2 (Ax-Schanuel, V.2). Defining D, π_m as above, let $U \subset D_n$ be an (irreducible) complex analytic subspace such that $\pi_m(U)$ does not lie in a coset of a proper subtorus of $(\mathbb{C}^{\times})^n$. Then

$$\dim_{\mathbb{C}} U^{zar} \ge \dim_{\mathbb{C}} U + n$$

where U^{zar} denotes the Zariski closure of U in $\mathbb{C}^n \times (\mathbb{C}^{\times})^n$.

It is more convenient to rephrase the above as a theorem about subvarieties of $\mathbb{C}^n \times (\mathbb{C}^{\times})^n$. This is easy to do by starting with U^{zar} instead of U. The following rephrasing is then equivalent to the above:

Theorem 1.3 (Ax-Schanuel, V.3). Let $V \subset \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ be an irreducible subvariety, and let U be a connected, irreducible component of $V \cap D_n$. Assume that $\pi_m(U)$ is not contained in a coset of a proper subtorus of $(\mathbb{C}^{\times})^n$. Then

$$\dim_{\mathbb{C}} V \ge \dim_{\mathbb{C}} U + n.$$

Remark. It is easy to see that the above version implies the Ax-Lindemann-Weierstrass theorem: Suppose that $V_1 \subset \mathbb{C}^n$ and $V_2 \subset (\mathbb{C}^{\times})^n$ are irreducible varieties with $V_1 \subset \pi^{-1}(V_2)$. Then plugging in $V = V_1 \times V_2$ into theorem 1.3, we see that $V \cap D$ has dimension at least as high as V_1 . The theorem then implies that dim (V_2) is at least n and hence that V_2 must be all of $(\mathbb{C}^{\times})^n$.

Acknowledgements. It is a pleasure to thank Jonathan Pila who introduced me to this circle of ideas and who carefully read over a previous version of the article, making suggestions that greatly improved the exposition. Moreover, Pila and Gareth Jones kindly alerted me to a problem in an earlier draft of the proof and suggested a fix.

2. An o-minimality proof of AX-Schanuel

This entire section is devoted to a proof of theorem 1.3 using the techniques of Pila-Zannier. To start with, we can assume that $U^{zar} = V$. We proceed by induction, the induction being lexicographic on the triple $(n, \dim V - \dim U, n - \dim U)$. The case of U being a point is trivial, we assume U has positive dimension. By convention, definable always means definable in $\mathbb{R}_{an,exp}$.

Definition. For an irreducible analytic set $X \subset \mathbb{C}^n \times (\mathbb{C}^{\times})^n$, we define X^{Lin} to be smallest affine linear subvariety containing $\pi_a(X)$.

 $\mathbf{2}$

²The reason for the notation is that the additive and multiplicative groups are denote \mathbf{G}_a and \mathbf{G}_m .

Define

$$F = \{(z_1, \dots, z_n, w_1, \dots, w_n) \in \mathbb{C}^n \times (\mathbb{C}^{\times})^n \mid 0 \le Re(z_i) \le 1\}$$

and note that $D_n \cap F$ is definable. Then $U \cap F$ is definable. Moreover, for an analytic set $X \subset \mathbb{C}^{\times} \times (\mathbb{C}^{\times})^n$ and a linear subspace $L \subset \mathbb{C}^n$ we define $G_d(X, L)$ to be the set of points $x \in X$ around which X is regular of dimension d, and such that the irreducible component X_0 containing x satisfies X_0^{Lin} is a translate of L.

Let $I \subset \mathbb{R}^n$ be defined by

$$I = \{\ell \in \mathbb{R}^n \mid G_{\dim U}\left(\left((\ell + V) \bigcap (D_n \cap F)\right), U^{\mathrm{Lin}}\right) \neq \emptyset\}$$

where addition is defined by acting on the first n co-ordinates of $\mathbb{C}^n \times (\mathbb{C}^{\times})^n$. Then I is definable, and we're going to get somewhere by considering the intersection of I with \mathbb{Z}^n , the monodromy group.

Define $F_{\vec{m}} = F + \vec{m}$ and note that $\bigcup_{\vec{m} \in \mathbb{Z}^n} F_{\vec{m}} = \mathbb{C}^n \times (\mathbb{C}^{\times})^n$. Moreover, if $U \cap F_{\vec{m}} \neq \emptyset$ then $-\vec{m} \in I$. This is because

$$(U \cap F_{\vec{m}}) - \vec{m} = (U - \vec{m}) \cap F \subset (V - \vec{m}) \cap D_n \cap F$$

where we have used the fact that $D_n + \vec{m} = D_n$. Assume first that $I \cap \mathbb{Z}^n$ is finite. In this case, it follows that U is a finite union of $U \cap F_{\vec{m}}$ and so is definable. Hence U is definable, closed and analytic in $\mathbb{C}^n \times (\mathbb{C}^{\times})^n$, and so by [1, Theorems 4.5 and 5.3], U must be an algebraic variety. However, it is trivial to show that D_n contains no positive dimensional algebraic varieties (f and e(f) can't both be algebraic functions for growth reasons, for example) which is a contradiction.

We thus conclude that $I \cap \mathbb{Z}^n$ is infinite. In particular, U intersects infinitely many $F_{\vec{m}}$. However, since U is connected the set of vectors \vec{m} such that $U \cap F_{\vec{m}} \neq \emptyset$ must be a connected set in the graph G with vertex set \mathbb{Z}^n and where the edges are given by connecting pairs of vertices all of whose co-ordinates are off by at most 1. But now we get for free that $I \cap \mathbb{Z}^n$ has at least T integer points of height at most T. Applying the counting theorem of Pila-Wilkie ([2],Thm 1.9) we conclude that I contains a semi-algebraic curve $C_{\mathbb{R}}$, containing at least 1 smooth non-zero integer point $l \in C(\mathbb{Z})$. We refer to C as the corresponding complex algebraic curve.

Next, consider the algebraic variety V + C. For each $c \in C_{\mathbb{R}}$ consider an irreducible component W_c of $(V + C) \bigcap (D_n \cap F)$ of dimension dim U, such that $W_c^{\text{Lin}} = U^{\text{Lin}}$. If there are infinitely many such components as c varies, then there must be a component W of $(V + C) \cap D_n$ containing infinitely many such W_c . Hence W is of dimension at least dim U+1. Moreover, since $\pi_a(U)$ is not contained in a coset of a \mathbb{Q} -linear space it implies that U^{Lin} isn't and hence $\pi_a(W)$ isn't either. Thus we can replace V and U by V + C and W and induct.

Otherwise, there must be only finitely many such W_c . Hence, there must be such a component $W = W_c$ appearing in infinitely many translates V + c, and thus by analyticity in all such translates by $c \in C$. If V is not invariant

JACOB TSIMERMAN

by translation under all elements of C, we replace (U, V) by $(W, \bigcap_{c \in C} V + c)$ and induct. Thus, we may assume that V + C = V.

In particular, V is invariant under l, hence also under the complex line generated by l by algebraicity. We make a linear change of co-ordinates with \mathbb{Z} -coefficients in \mathbb{C}^n so that l is a multiple of $(1, 0, \ldots, 0)$ and the corresponding 'monomial' change of coordinates in $(\mathbb{C}^{\times})^n$ so as to keep D_n invariant note that this change of co-ordinates preserves all relevant dimension. We can thus write V as $V = \mathbb{C} \times V^0$ where

$$V^0 \subset \mathbb{C}^{n-1} \times (\mathbb{C}^{\times})^{n-1} \times \mathbb{C}^{\times}.$$

The idea now is to apply induction on n.

So write $D_n = D_1 \times D_{n-1}$ and $U = \bigcup_{z \in D_1} z \times U_z$. For $z \in D_1$, let $V_z \subset \mathbb{C}^{n-1} \times (\mathbb{C}^{\times})^{n-1}$ denote the fiber of V over z. Note that since U surjects under projection onto an open set of D_1 , so must V and since V is algebraic it must be dominant onto $D_1^{zar} = \mathbb{C} \times \mathbb{C}^{\times}$. Thus, dim $V = 2 + \dim V_z$ for a generic z. Now, we split into two cases:

• Suppose that the $\pi_a(U_z) \subset \mathbb{C}^{n-1}$ are not generically contained in a proper \mathbb{Q} -linear subspace. Then by induction, we have that for a generic z

$$\dim V_z \ge n - 1 + \dim U_z$$

which yields our claim since $\dim V = \dim V_z + 2$ while $\dim U = \dim U_z + 1$.

• Else, since U is not contained in a proper \mathbb{Q} -linear subspace the U_z must vary with z. Let $U_0 \subset D_{n-1}$ be the projection of U and $V_0 \subset \mathbb{C}^{n-1} \times (\mathbb{C}^{\times})^{n-1}$ be the projection of V. Note that since the U_z vary, we have that dim $U = \dim U_0$. Then by induction, dim $V_0 \ge \dim U_0 + (n-1)$. This again yields our claim, since dim $V \ge 1 + \dim V_0$.

References

- Y. Peterzil and S. Starchenko, Tame complex analysis and o-minimality, Proceedings of the ICM, Hyderabad 2010
- [2] J. Pila and A. J. Wilkie, The rational points of a definable set, Duke Math. J. 133 (2006), 591–616.