
AX-SCHANUEL AND O-MINIMALITY

JACOB TSIMERMAN

1. Interpreting Ax-Schanuel Geometrically

The goal of this note is to give a geometric interpretation of the Ax-
Schanuel theorem, and to give a model-theoretical proof of it. To start, lets
recall the

Theorem 1.1 (Ax-Schanuel). Let f1, . . . , fn ∈ C[[t1, . . . , tm]] be power se-
ries that are Q - linearly independent modulo C. Then we have the following
inequality:

dimCC(f1, . . . , fn, e(f1), . . . , e(fn)) ≥ n+ rank

(
∂fi
∂tj

)
1≤i≤n
1≤j≤m

where e(x) = e2πix and dimK L is the transcendence degree of L over K.

To see the geometric implication of this theorem, lets restrict to the case
where the power series fi are convergent in some open neighborhood B ⊂
Cm. Note that by the Seidenberg embedding theorem1, it is sufficient to
look at this case. Define the uniformizing map

πn : Cn → (C×)n, πn(x1, . . . , xn) = (e(x1), . . . , e(xn))

and the subset Dn ⊂ Cn × (C×)n to be the set

(~x, ~y) ∈ Dn ⇐⇒ πn(~x) = ~y.

Then we have a well defined map ~f : B → Dn given by

~f(t1, . . . , tm) = (f1(t1, . . . , tm), . . . , fn(t1, . . . , tm), e(f1(t1, . . . , tm)), . . . , e(fn(t1, . . . , tm)).

Define U ⊂ Dn to be the image of ~f . U is then a complex analytic space,
and it is easy to verify that

dimC(U) = rank

(
∂fi
∂tj

)
1≤i≤n
1≤j≤m

and denoting the Zariski closure of U by U zar,

dimC(U zar) = dimCC(f1, . . . , fn, e(f1), . . . , e(fn)).

1Thanks to Martin Bays for pointing this out
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Moreover, denote by πa and πm the projections onto Cn and (C×)n re-
spectively2. Then the linear independence condition on the fi is equivalent
to saying that πa(U) does not lie in the translate of a proper Q-linear sub-
space of Cn, or that πm(U) does not lie in a coset of a proper subtorus. We
can thus rephrase the Ax-Schanuel theorem geometrically as follows:

Theorem 1.2 (Ax-Schanuel, V.2). Defining D,πm as above, let U ⊂ Dn be
an (irreducible) complex analytic subspace such that πm(U) does not lie in
a coset of a proper subtorus of (C×)n. Then

dimC U
zar ≥ dimC U + n

where U zar denotes the Zariski closure of U in Cn × (C×)n.

It is more convenient to rephrase the above as a theorem about subvari-
eties of Cn × (C×)n. This is easy to do by starting with U zar instead of U .
The following rephrasing is then equivalent to the above:

Theorem 1.3 (Ax-Schanuel, V.3). Let V ⊂ Cn × (C×)n be an irreducible
subvariety, and let U be a connected, irreducible component of V ∩ Dn.
Assume that πm(U) is not contained in a coset of a proper subtorus of (C×)n.
Then

dimC V ≥ dimC U + n.

Remark. It is easy to see that the above version implies the Ax-Lindemann-
Weierstrass theorem: Suppose that V1 ⊂ Cn and V2 ⊂ (C×)n are irreducible
varieties with V1 ⊂ π−1(V2). Then plugging in V = V1×V2 into theorem 1.3,
we see that V ∩D has dimension at least as high as V1. The theorem then
implies that dim(V2) is at least n and hence that V2 must be all of (C×)n.

Acknowledgements. It is a pleasure to thank Jonathan Pila who intro-
duced me to this circle of ideas and who carefully read over a previous
version of the article, making suggestions that greatly improved the expo-
sition. Moreover, Pila and Gareth Jones kindly alerted me to a problem in
an earlier draft of the proof and suggested a fix.

2. An o-minimality proof of Ax-Schanuel

This entire section is devoted to a proof of theorem 1.3 using the tech-
niques of Pila-Zannier. To start with, we can assume that U zar = V .
We proceed by induction, the induction being lexicographic on the triple
(n,dimV − dimU, n − dimU). The case of U being a point is trivial, we
assume U has positive dimension. By convention, definable always means
definable in Ran,exp.

Definition. For an irreducible analytic set X ⊂ Cn×(C×)n, we define XLin

to be smallest affine linear subvariety containing πa(X).

2The reason for the notation is that the additive and multiplicative groups are denote
Ga and Gm.
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Define

F = {(z1, . . . , zn, w1, . . . , wn) ∈ Cn × (C×)n | 0 ≤ Re(zi) ≤ 1}
and note that Dn ∩ F is definable. Then U ∩ F is definable. Moreover,
for an analytic set X ⊂ C× × (C×)n and a linear subspace L ⊂ Cn we
define Gd(X,L) to be the set of points x ∈ X around which X is regular
of dimension d, and such that the irreducible component X0 containing x
satisfies XLin

0 is a translate of L.
Let I ⊂ Rn be defined by

I = {` ∈ Rn | GdimU

((
(`+ V )

⋂
(Dn ∩ F )

)
, ULin

)
6= ∅}

where addition is defined by acting on the first n co-ordinates of Cn×(C×)n.
Then I is definable, and we’re going to get somewhere by considering the
intersection of I with Zn, the monodromy group.

Define F~m = F + ~m and note that
⋃
~m∈Zn F~m = Cn × (C×)n. Moreover,

if U ∩ F~m 6= ∅ then −~m ∈ I. This is because

(U ∩ F~m)− ~m = (U − ~m) ∩ F ⊂ (V − ~m) ∩Dn ∩ F
where we have used the fact that Dn + ~m = Dn. Assume first that I ∩
Zn is finite. In this case, it follows that U is a finite union of U ∩ F~m
and so is definable. Hence U is definable, closed and analytic in Cn ×
(C×)n, and so by [1, Theorems 4.5 and 5.3], U must be an algebraic variety.
However, it is trivial to show that Dn contains no positive dimensional
algebraic varieties (f and e(f) can’t both be algebraic functions for growth
reasons, for example) which is a contradiction.

We thus conclude that I ∩ Zn is infinite. In particular, U intersects in-
finitely many F~m. However, since U is connected the set of vectors ~m such
that U ∩F~m 6= ∅ must be a connected set in the graph G with vertex set Zn
and where the edges are given by connecting pairs of vertices all of whose
co-ordinates are off by at most 1. But now we get for free that I ∩Zn has at
least T integer points of height at most T . Applying the counting theorem
of Pila-Wilkie ([2],Thm 1.9) we conclude that I contains a semi-algebraic
curve CR, containing at least 1 smooth non-zero integer point l ∈ C(Z). We
refer to C as the corresponding complex algebraic curve.

Next, consider the algebraic variety V + C. For each c ∈ CR consider an
irreducible component Wc of (V + C)

⋂
(Dn ∩ F ) of dimension dimU , such

that WLin
c = ULin. If there are infinitely many such components as c varies,

then there must be a component W of (V + C) ∩ Dn containing infinitely
many such Wc. Hence W is of dimension at least dimU+1. Moreover, since
πa(U) is not contained in a coset of a Q-linear space it implies that ULin

isn’t and hence πa(W ) isn’t either. Thus we can replace V and U by V +C
and W and induct.

Otherwise, there must be only finitely many such Wc. Hence, there must
be such a component W = Wc appearing in infinitely many translates V +c,
and thus by analyticity in all such translates by c ∈ C. If V is not invariant
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by translation under all elements of C, we replace (U, V ) by (W,
⋂
c∈C V +c)

and induct. Thus, we may assume that V + C = V .
In particular, V is invariant under l, hence also under the complex line

generated by l by algebraicity. We make a linear change of co-ordinates with
Z-coefficients in Cn so that l is a multiple of (1, 0, . . . , 0) and the correspond-
ing ‘monomial’ change of coordinates in (C×)n so as to keep Dn invariant -
note that this change of co-ordinates preserves all relevant dimension. We
can thus write V as V = C× V 0 where

V 0 ⊂ Cn−1 × (C×)n−1 × C×.
The idea now is to apply induction on n.

So write Dn = D1 × Dn−1 and U =
⋃
z∈D1

z × Uz. For z ∈ D1, let

Vz ⊂ Cn−1×(C×)n−1 denote the fiber of V over z. Note that since U surjects
under projection onto an open set of D1, so must V and since V is algebraic
it must be dominant onto Dzar

1 = C× C×. Thus, dimV = 2 + dimVz for a
generic z. Now, we split into two cases:

• Suppose that the πa(Uz) ⊂ Cn−1 are not generically contained in a
proper Q-linear subspace. Then by induction, we have that for a
generic z

dimVz ≥ n− 1 + dimUz
which yields our claim since dimV = dimVz + 2 while dimU =
dimUz + 1.
• Else, since U is not contained in a proper Q-linear subspace the
Uz must vary with z. Let U0 ⊂ Dn−1 be the projection of U and
V0 ⊂ Cn−1× (C×)n−1 be the projection of V . Note that since the Uz
vary, we have that dimU = dimU0. Then by induction, dimV0 ≥
dimU0 + (n − 1). This again yields our claim, since dimV ≥ 1 +
dimV0.
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