
Lecture 7: Etale Fundamental Group - Examples

October 15, 2014

In this lecture our only goal is to give lots of examples of etale fun-
damental groups so that the reader gets some feel for them. Some of the
examples will involve scheme-theoretic concepts that we have not covered
such as normality, smoothness, dimension etc. We pause to say a few words
about these when appropriate, but we do not stop to explain all the details,
rather hoping that giving the reader a presentation of the general picture is
useful even if some of the technical pieces are missing.

As a matter of notation, when we do not care about the based-point we
merely write π1(X) to denote the fundamental group of X.

1 Fields

We begin with the most basic example, to demonstrate how the etale fun-
damental group provides a generalization of Galois theory1.

Let X = Spec k where k is some field. Then picking an algebraic closure
k, and an algebraically closed field K containing k we write x : Spec K →
Spec k to be the geometric point of X. Then finite etale schemes over X2

correspond to finite unions ∪iSpec Li, where Li is a separable field extension
of k.

Now, consider an increasing sequence of Galois covers t#i : Li ⊂ K of k
whose union is ksep, the separable closure of k. Then (X̃, x̃ := lim←−(Spec Li, ti)
is a universal cover of X. We thus see that π1(X,x) ∼= Gal(ksep/k).

Now suppose φ : Spec L → Spec k is a morphism of fields, taking a
geometric point y : Spec L→ Spec L to x : Spec L→ Spec k.

Then the induced map on fundamental groups is the natural map from
Gal(Lsep/L) to Gal(ksep ∩ /k). Note that if L is a finite extension of k then

1this should not be surprising, as most of our proofs essentially reduced studying etale
maps to studying separable field extensions

2in fact, every etale morphism to X is finite!
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the map will be an injection, whereas in general it does not have to be! As an
exercise, give an example where the map is not injective, but IS surjective.

2 Complete Discrete Valuation Rings

Say that A is a discrete valuation ring, with maximal ideal M , such that
A is complete, in that A ∼= Â. Let k be the residue field A/M . By
Hensel’s lemma3, the base change functor gives an equivalence of categories
FET/Spec A ∼= FET/Spec k.

Another way of stating that is as follows: if x : Spec k → Spec k is a
geometric point with image y in Spec A, then

π1(Spec k, x→ π1(Spec A, y)

is an isomorphism. Thus, the etale fundamental group of the spectrum of
a complete discrete valuation ring is isomorphic to the Galois group of its
residue field.

3 Normal Schemes

Definition. We say that a scheme X is normal if all local rings OX,x are
domains, and are integrally closed in their field of fractinos.

Let X be a (noetherian) normal scheme. Then X must be irreducible,
as the local ring at an intersection point of two irreducible components is
necessarily not a domain. Thus X has a generic point j : Spec K(X)→ X.
Moreover, if Y is a connected, finite etale cover of X, then one can show –
See [Milne, Etale Cohomology, I,3.17] that Y is also normal. Hence Y must
be the normalization of X in K(Y ).

In particular, a connected finite etale cover of X remains connected
when base-changed to Spec K(X). It is easy to see that a homomorphism
of groups r : G → H is surjective iff every H-set with a single orbit also
has a single orbit as a G-set. It follows that π1(Spec K(X)) surjects onto
π1(X).

In fact, if we let K(X)un be the compositum of all finite extensions
of K(X) in which the normalization of X is unramified over X, we hae
π1(X) ∼= Gal(K(X)un/K(X)).

3Which we will cover in a future lecture, or see Atiya-Macdonald
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4 Examples from number theory

4.1 Spec Z

Let X = Spec Z, so that K(X) = Q. Since Z is normal, it follows from
the previous section that the connected, finite etale schemes over X are of
the form Spec OK , where OK is the ring of integers in some number field
K. However, every extension of K is known to be ramified about at least 1
prime, it thus follows that π1(Spec Z) = 1.

4.2 Spec Z[ 1
n
]

Let X = Spec Z[ 1n ]. As before, finite etale schemes over X are of the form
Spec OK [1/n], where OK is unramified above Spec Z away from primes di-
viding n (or just, ‘away from n’ for short). Thus π1(Spec Z[ 1n ]) ∼= Gal(Q(n)/Q)

where Q(n) denotes the maximal extension of Q unramified away from n.

4.3 Spec Z(p)

Let X = Spec Z(p), the localization of Z at (p). then X has two points,
corresponding to (p) and (0), with maps i : Spec Fp → Spec X and j :
Spec Q → Spec X. As we saw from the last section, since X is normal the
induced map j∗ on fundamental groups is surjective. On the other hand, i∗
is injective, as there are Galois fields K above Q unramified above p with
prime ideals P above p such that FP is of arbitrary degree over Fp.

The following is a good exercise in getting practise at switching back and
forth between the fundamental group and finite etale covers using the main
theorem:

• For a subgroup H of a group G, let N be the normal subgroup of G
generated by H. Prove that G/N is the largest quotient of G on which
the action of H by left multiplication is trivial.

• Let K be the compositum of all finite extensions L of Q which in

which the prime p totally splits; i.e. OL ⊗Z Fp ∼= F[L:Q]
p . Prove that

the Gal(K/Q) is the quotient of π1(Spec X) by the normal subgroup
generated by i∗π1(Spec Fp).
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5 Examples from complex geometry

5.1 X = A1
C

Let X = A1
C. We claim that π1(X) = 1. To see this, note suppose that

φ : Y → X is a finite etale cover of X. Then Y must be a normal curve, and
therefore smooth. Let Y ′ be the unique smooth proper curve over C with
an open immersion Y → Y ′ 4 and φ extends to a map φ′ : Y ′ → P1

C. Now,
consider the differential form ω = φ′∗(dtt ) on Y ′. Since φ is etale and dt

t has
a pole at ‘infinity’, ω has no zeroes anywhere, and has at least simple poles
at each pre-image of 0 and ∞. Thus, if deg φ ≥ 2, ω would have degree at
most −3, which never happens. Hence the degree of φ must be 1, and so φ
is an isomorphism.

Note that this proof does not work in finite characteristic because the
pullback under a wildly ramified map can turn a differential form with a
pole into one with zeroes. For instance, y → yp− y+ x defines a non-trivial
finite etale cover of A1

k for k an algebraically closed field of char. p.
Next, we do two examples of singular curves:

5.2 X is a cuspidal cubic curve.

Let X = Spec C[x, y]/(y2 − x3), so that X is what’s usually known as a
‘cuspidal cubic curve’. Consider a connected etale cover Y → X. We claim
that Y must be trivial.

To see this, first consider the normalization of X by ψ : Spec C[t]→ X,
given by x → t2, y → t3. Then ψ is bijective. We claim that ψY : Y ×X
Spec C[t] → Y is also bijective. To prove this, first note that it suffices to
check first note that as φ is an isomorphism away from the point (x, y), φY
is an isomorphism above points not mapping to (x, y). Hence, we are free
to base change to the closed point i : Spec C → X, i# : P (x, y) → P (0, 0).
Letting Y ′ be the correspondig fiber product = Y ×X Spec C, and noting
that

C[t]⊗C[t2,t3] C ∼= C[t]/(t2)

we get the map ψ′ : Y ′×Spec CC[t]/(t2)→ Y ′. But as t is nilpotent, the two
schemes have the same reduced subscheme, and so ψ′ is clearly a bijection5.

4see [Hartshorne, AG, I.8] for details
5Note that this part of the argument used nothing about Y being etale. Thus we

have proven that any base change of φ is a bijection, and in fact if we are a bit careful,
a homeomorphism. Thus φ is what’s called a universal homeomorphism, and it is a
general—highly non-trivial—fact that these induce an equivalence of categories on etale
sites.

4



It follows that Y ′ is a connected finite etale cover of A1
C, hence must

trivial by the previous subsection. Hence Y is also trivial, and so π1(X) = 1.

5.3 X is a nodal cubic

Let X = Spec C[x, y]/(y2 − x3 − x2) so that X is what’s usually called a
‘nodal cubic curve’. Consider a connected etale cover Y → X.

Now, to understand Y , we record the normalization ofX by ψ : Spec C[t]→
X given by x→ t2−1, y → t(t2−1)6. By two subsections ago, Y ×XSpec C[t]
is a disjoint union of n different Spec C[t]’s, each mapping isomorphically
to Spec C[t]. We refer to the i’th one as Spec C[t]i. Moreover, the map
Y ×X Spec C[t] → Y is an isomorphism on the complement of the point
(x, y).

Next, above x, y, Y must have n distinct points y1, . . . , yn, as C is al-
gebraically closed and thus the closed point of X is also a geometric point.
Moreover, as Spec C[t]→ X has 2 closed points above (x, y), the same must
be true for each lift to Y . That is, on the pre-image of (x, y), the 2n points
(t − 1)i, (t + 1)i, 1 ≤ i ≤ n map to the n-points y1, . . . , yn in a two-to-one
fashion. Sine Y is connected, these must form a ‘chain’, and so we can
arrange things so that (t − 1)i maps to the same point of Y as (t + 1)i+1,
where we interpert the subscripts cyclically modulo n.

We thus understand the topological structure of Y , and it remains to
understand its scheme structure. Since C[x, y]/(y2 − x3 − x2) → C[t] is
injective, and Y is affine and flat over X, we see that Y = Spec B where B
injects into ⊕iC[t]i. Moreover, It must map onto the subring Rn of elements
(Pi(t))1≤i≤n such that Pi(1) = Pi+1(−1)

We claim that Spec R is etale over Spec X. Clearly, this need only be
checked above the point (x, y). Since at a point yi above (x, y), Spec Rn
looks locally like Spec R2 - where R2 ⊂ C[t1]⊕C[t2] is the subring of polyno-
mials (P (t1), Q(t2)) where P (1) = Q(−1), P (−1) = Q(1)- it suffices to prove
that Spec R2 is etale above X at ((t1 − 1, 0), (0, t2 + 1)). Convince yourself
now that ψ identifies C[x, y]/(y2 − x3 − x2) with the ring T of polynomials
A(t) such that A(1) = A(−1) (hint: subtract a constant to get A(1) = 0 and
then subtract a constant multiples of xn or yxn. Now iterate on degree).

We claim that ((1, 1), (t,−t)) is a basis for R2 over T away from (t). To
prove this, note that we can write

(P (t1), Q(t2)) = (1, 1) · P +Q

2
+ (t,−t) · P −Q

2t
,

6Morally, we plug in t = y/x into the defining equation.
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which proves that our set is a basis. Thus R2 is finite flat over T . As the
pre-image of (0, 0) in Spec R2 has two closed points and is of degree 2, both
closed points must be simple. Hence Spec R2 is etale over X as desired.

Thus, Spec Rn and Y are both etale over X, and thus Spec Rn is etale
over Y of generic degree 1, and thus Spec Rn = Y .

It follows that the only finite etale covers ofX are the Galois coversSpec Rn
with automorphism group Z/nZ, and thus π1(X) = Ẑ.

6 The interaction of geometry and arithmetic

Consider now a scheme Xk of finite type over a non-algebraically closed
field k, and let Xk denote the base change to Spec k. We break up the
fundamental group of Xk into so-called geometric and arithmetic parts. For
the rest of this section, we pick a geometric point of Xk which we omit from
the notation from here on out. We have a sequence of maps

π1(Xk)
i // π1(Xk)

j
// π1(Spec k) .

We study this sequence;

1. j ◦ i is trivial: This is because the map Xk → Spec k factors through
Spec k, which has trivial fundamental group.

2. i is injective: Suppose not, so that 1 6= g ∈ π1(Xk) is in the kernel
of j. Since g is non-trivial, we can find a finite etale cover Y on
whose geometric points g acts non-trivially. If we can find a cover Zk
of Xk whose base change Zk contains Y as a connected component,
then j(g) acts non-trivially on the geometric points of Zk, which is a
contradiction.

To construct such a Z, first note that since Y is finite over Xk and is of
finite type over k we can find a finite etale cover YL over XL for some
finite Galois extension L of k, whose base change via Spec k → Spec L
is Y . It suffices to make the finite descent to a cover of X.

Consider, for each element σ ∈ Gal(L/k) the base change Y σ
L of Y

along the map σ : Spec L→ Spec L. Then Gal(L/k) acts on

ZL :=
⋃
σ

Y σ
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in a natural way, compatible with its action on XL. Thus, taking the
quotient by this group, we get a finite etale cover Z of Xk which base
changes to ZL, which completes the proof7.

3. j is surjective if Xk is connected8 : In this case, XL is a Galois
cover of Xk whose Automorphism group is naturally isomorphic to
Gal(L/k). The claim easily follows.

The now-known-to-be-normal subgroup j(π1(Xk)) is called the geometric
fundamental group of X.

7 Comparison with usual fundamental group

Suppose X is a finite type scheme over C. There is a naturally associ-
ated complex analytic space X(C) to X, and likewise to finite etale covers
of Y . Moreover, it is not hard to see using our standard form for etale
maps together with the inverse function theorem that if Y → X is finite
etale, then Y (C) → X(C) is a covering space. Thus there is a functor
F : FET/X → FCOV/X(C), where FCOV/X is the category of finite-
degree covering spaces.

Theorem 7.1. The functor X is an equivalence of categories.

The hardest part by far of this theorem is showing that covering spaces
of X(C), which are a-priori only complex analytic spaces, in fact come from
schemes. This is usually called the Riemann existence theorem, and even
for curves it is quite an achievement. For a point x ∈ X(C) let x be the cor-
responding geometric point. Then, denoting by π1(X(C), x) the topological
fundamental group, we have the following:

Corollary 7.2. There is a natural map π1(X,x) → π1(X(C), x) whose
image is dense, and thus identifies the etale fundamental group with the
profinite completion of the usual fundamental group.

Proof. The finite quotients of the first group and the finite,continuous quo-
tients of the second group, which implies the lemma.

As an exercise, the reader can go back over our list of examples and
verify the compatibility of the above corollary with our computations.

7Can you fill in the details? We know the quotient exists by the previous lecture, but
why is it finite etale over Xk, and why is the base change ZL?

8By definition, this is equivalent to Xk being geometrically connected.
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7.1 Don’t get greedy!

One cannot hope for an algebraic definition of π1(X(C)). The reason is
that Serre found an example of a variety X over Spec C, such that if we
set Xσ to be the base change along σ : Spec C→ Spec C then π1(X(C), x)
is NOT isomorphic to π1(X

σ(C), x)9 But of course, algebraicaly the covers
X → Spec C and Xσ → Spec C are isomorphic.

7.2 The most interesting group in mathematics

Is arguably π1(P1
Q − {0, 1,∞}). By theorem 7.2, π1(P1

C − {0, 1,∞}) = F̂2,

the profinite completion of the free group on two elements10. Thus, as we
saw in the previous section there is a sequence

1→ F̂2 → π1(P1
Q − {0, 1,∞})→ Gal(Q/Q).

Understanding anything about this sequence would be pretty sweet.

9Of course, they have the same profinite completion.
10There is still no purely ‘algebraic’ proof of this fact!
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