
MAT327 MIDTERM EXAM SOLUTIONS

(1) (10 points) Prove that the map f : [−1, 1]→ [0, 1] given by f(t) = t2

is a quotient map.

Solution: First, f(t) is continuous, since t → t2 is continu-
ous from R to R and restrictions of continuous functions to sub-
spaces are also still continuous (this claim did not require proof).
Moreover,f(0) = 0, f(1) = 1 and so by the intermediate value theo-
rem f is surjective.

Finally, we show that f is open. This will finish the proof since
an open, continuous, surjective map is a quotient map. To show f
is open it is sufficient to show that the image of every basis element
B is an open set.
• B = [−1, a). If a ≥ 0 then f(B) = [0, 1]. Else f(B) = (a2, 1].
• B = [a, 1]. If a ≤ 0 then f(B) = [0, 1]. Else f(B) = (a2, 1].
• B = (a, b),−1 ≤ a < b ≤ 1. If a > 0 then f(B) = (a2, b2). If
b < 0 then f(B) = (b2, a2). Else, f(B) = [0,max(a2, b2)).

Alternative Solution: Notice that the domain and range of f
are compact. Let V ⊂ [−1, 1] be a closed set. Then V is compact
since closed subsets of compact sets are compact. So f(V ) is also
compact, since images of compact sets under continuous functions
are compact. Finally, we conclude f(V ) is closed since compact sub-
spaces of Hausdorff spaces are closed. Thus f is a closed, continuous,
surjective map, which means its a quotient map.

(2) (10 points) Let O = (0, 0) ∈ R2 be the origin. Prove that R2\{O} is
connected.You may use without proof that R is connected.

Solution: Consider the four subsets A = R>0 × R, B = R ×
R>0, C = R<0×R, D = R×R<0. Since R>0,R<0 are both isomorphic
to R, R is connected, and the product of two connected spaces is
connected, it follows that A,B,C,D are all connected. Since A,B
have a point in common it follows that A∪B is connected. Similarly
for C ∪ D. Now since A ∪ B and C ∪ D have a point in common
(for example, (−1, 1)) it follows that A ∪ B ∪ C ∪ D = R2\{0} is
connected.

Alternative Solution: Since path connected spaces are con-
nected, it is enough to show that X = R2\{0} is path- connected.
Recall that the relation a ∼ b if a has a path to b is an equivalence
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relation. Now (0, 1) has a path to (a, b) given by a straight line
whenever (a, b) is not of the form a < 0, b = 0. Formally, the path is
f(t) = (ta, tb+ (1− t)). Thus (0, 1) is equivalent to all points except
perhaps the negative x-axis. However, each point in the negative
x-axis has a path to (1, 1) via a straight line. Thus, they are all
equivalent to (1, 1) and thus to (0, 1) since (1, 1) ∼ (0, 1). We have
shown that all the points lie in a single equivalence class, and thus
the space is path-connected.

(3) (10 points) Let (X, d) be a compact metric space.

(a) Prove that there is a positive real number M such that

d(x, y) < M

holds for all x, y ∈ X.
(b) Define DX := sup{d(x, y) : x, y ∈ X}. Prove there exist points

a, b ∈ X such that d(a, b) = DX .

Solution: Since X is compact and finite products of compact
spaces are compact, it follows that X × X is also compact. Now
the distance function d : X × X → R≥0 is continuous. We showed
this in class, but it is possible to show directly: If d(x, y) = t, then
d−1(t− ε, t+ ε) contains B ε

2
(x)×B ε

2
(y) by the triangle inequality.

Now by the extreme value theorem, continuous functions on com-
pact spaces have bounded image, and achieve their maximum.This
proves both parts of the question.

(4) (10 points) Let X be a normal topological space. Let A,B,C be
closed subsets of X which are pairwise disjoint. In other words,
A ∩ B = B ∩ C = A ∩ C = ∅. Prove that there exists a continuous
function f : X → R such that f(A) = 0, f(B) = 1, f(C) = 2.

Solution: The key is to apply Uryshons lemma, but to the dis-
joint closed sets A ∪ B and C. This gives us a continuous function
fAB : X → R such that fAB is 0 on A ∪ B and 1 on C. Similarly,
we get a continuous function fBC which is 0 on A and 1 on B ∪ C.
Now f = fAB + fBC is the desired function.

Finally, to show that f is continuous, note that it is the composi-
tion of the continuous function (fAB, fBC) to R×R with the addition
function R× R→ R.

Alternative Solution: Let Y = A ∪ B ∪ C. Since A,B,C are
closed and disjoint, it follows that they are each clopen subsets of
Y . Thus the function g : Y → R defined by g(A) = 0, g(B) =
1, g(C) = 2 is continuous. By the Tietze extension theorem, this can
be extended to a continuous function f : X → R.
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(5) (10 points) Let X be the topological space, which as a set is [0, 1]N

endowed with the product topology. Prove that X has a countable
dense subset. In other words, there is a countable subset A ⊂ X
such that Ā = X. You may use without proof that a countable union
of countable sets is countable, and that the product of finitely many
countable sets is countable.

Solution: Let P = Q ∩ [0, 1]. Note that since Q is countable, P
is countable as well, and since the rationals are dense in the reals, P
is dense in [0, 1]. Now, we cannot simply take A = PN since that is
uncountable. So we modify the idea slightly. We set An ⊂ [0, 1]N to
consist of all sequences (ai)i∈N satisfying{

ai ∈ P ∀i ∈ N
ai = 0 i > n

Then An is bijective to Pn and therefore countable. Finally, we
set A = ∪n∈NAn. Note that A can be described as the set of all
sequences all of whose co-ordinates are rational, and only finitely
many of which are non-zero. Since countable unions of countable
sets is countable, it follows that A is countable as well. It remains
to show that A is dense.

Let U =
∏

i∈N Ui be a basis element for [0, 1]N. For each i ∈ N we
pick an element ai ∈ P ∩Ui. Since all but finitely many of the Ui are
the entire interval [0, 1], it follows that there is some natural number
n such that we may pick ai = 0 for all i > n. We take ~a = (ai)i∈N.
Then ~a ∈ U ∩An, which proves that A is dense as desired.


