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MATHEMATICAL NOTES [March 

AN INEQUALITY FOR REARRANGEMENTS 

G. G. LORENTZ,University of Toronto 

Let fi(x), fi(x), . . denote positive measurable functions on (0, 1) and 
fi*(x), fi*(x), . . their equimeasurable decreasing rearrangements (see [I] ,  
[3]). For the work dealing with rearrangements, the following simple inequality 
is basic : 

There are, however, also other combinations of fl, fi, . . for which relations 
similar to (1) hold. One of these was given by Ruderman [2, Theorem 111. In 
this note we propose to determine, quite generally, necessary and sufficient 
conditions on a continuous function @(x, ul, . , u,) defined for O < x < l ,  
u ~ Z O ,  k = l ,  2, . . , n,  under which 

is satisfied for each set fk(x), k =1, ,n, of positive bounded measurable func- 
tions on (0, 1). (We assume the fk(x) bounded in order to insure the existence of 
both integrals in (2).) 

In inequalities containing values of the function @ a t  different points, we 
shall omit those of the arguments x, ul, . . , un which take the same but arbi- 
trary values. For a set I of indices i ,  1 S i5n, we put UI = { ui ) itI. We also put 
UI+ Ur' = {ui+ul  ) i , ~ ,if Ur' = { u l  f . 

THEOREM.I n  order that @ satisfy (2) it is necessary and suficient that @ have 
the Properties 

for all O < x < l ,  uk 2 0 ,  k=1 ,  . . , n, h>0,  0<6<x ,  6<1-x, and i#j. If @ 
has continuous second partial derivatives with respect to all variables, conditions 
(3), (4) are equivalent to 

a2a 
5 0. 

axaui 

Proof. Suppose O < a < l ,  0 < 6 < a ,  6<1-a,  ifj. Define fi(x)=ui+hi for 



177 19531 MATHEMATICAL NOTES 

XSU-6and a < x S a + b  and fi(x)=ui for otber X, fi(x)=ui+hi for x$a,  
fj(x) =ui  for x>a ,  further fk(x) =uk, O<x<1 for k different from i and j. Then 
the inequality (2) reduces to 

Putting here hi=O, we obtain (4). Dividing through by 6 and making 6+0, we 
obtain (3). 

To prove that the conditions are sufficient, we first deduce from (3) that 
for any two disjoint groups of indices I,J and hi, hi 2 0, 

From (3) we have 

@(u;+ sh, uj + h) - @(u;+ sh, uj) - @(u;+ (S - l)h, ~j + h) 

+ @(ui+ (S - l)h, ~ j )  2 0. 

Adding these relations for s = 1, 2, . . . , p we deduce 

Treating now the second argument in (6) in the same way we obtain, for posi- 
tive integers p, q and hi =ph, hi =qh, 

(7) @(ui+ hi, ~j + hi) - @ ( ~ i+ hi, uj) - @ ( ~ i ,  uj + hj) + @(ui, uj) 2 0. 

An appeal to the continuity of @ establishes (7) for arbitrary hi, h i 2  0. 
To prove ( S ) ,  let I' be the group consisting of I and the index k, which be- 

longs neither to I nor to J. Then 

Applying this relation we can, beginning with (7) ,  prove (5) by induction with 
respect to the number of elements of I and J. 

In the same way, we can generalize (4) to 

Replacing in identity (8) uk by x -t, uk +hk by x+t, and combining (5) and (9), 
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we obtain finally 

We can now prove (2) under the assumption that each of the functions fk(x) is 
a step-function, constant on each of the intervals ((s - l)/p, s/p), s =1, . . ,p. 
For 1 5 s  < p  we consider the following elementary operation which gives a 
new set of functions fk(x). We put fk(x) =fk(x) outside of ((s- l)/p, (s+l)/p); 
on ((s-l)/p, (s+l)/p), fk(x) is the decreasing rearrangement of fk(x) on this 
interval. If I consists of the indices k for which fk(x) increases on ((s-l)/p, 
(s+ l)/p), J of the indices for which fk(x) decreases, uk is the smaller, uk+hk the 
larger of the two values of fk(x), then (10) with x=s/p, 6 = l /p  is exactly the 
inequality 

By a finite number of elementary operations we can transform fi, . . . ,f, into 
fi*, . ,f2. This proves (2) in our particular case. In the general case we con- 
sider sequences fp), . . . ,fp),p =  1, 2, . . . of uniformly bounded step-functions 
of our type such that ff')(x)-+fk(x) almost everywhere and pass to the limit 
$ 4 ~in the relation (2) for the f?).This gives (2) in full generality. 

I t  remains to show that (3) is equivalent to (3a) and (4) to (4a), if @ has 
continuous second derivatives. If (4) holds, then for any i, O<x<l ,  ukhO, 
there are arbitrary small t >0 with 

Dividing by 2t2 and making t+O, we obtain (4a). Conversely, from (4a) we de- 
duce a relation stronger than (4),namely 

For if (4b) does not hold, there is a c> 0 and a rectangle R = (x, x+t;  ui, ui+h) 
with side lengths t, h for which A2@ 2 cht. Subdividing R, we obtain a sequence 
of rectangles with the same property which converge to  a point (xa, uy). Then 

d2@ A2@ 
- lim -~ c > O ,

dxOduq ht 

which contradicts (4a). In the same way we treat the pair of relations (3), (3a). 
Examples. The inequality (2) holds if +(ul, . . ,u,) =ul . u,. I t  holds for 

@ =F(ul+u2+ . . u,) if and only if F(u) is convex, that is F(u+2h) -2F(u+h)
+F(u) 20. For example, F(u) = -log u has this property. Writing (2) in this 
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case for sums instead of integrals, we obtain Ruderman's inequality [2, Theorem 
11I 

where ask50 and the a;, s=1, . . . ,p are the ask, s=1, . . . ,p arranged in or-
der of decreasing magnitude. 
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ON SUMS INVOLVING BINOMIAL COEFFICIENTS* 

EMILGROSSWALD,Institute for Advanced Study 

In some problems of algebra? we are led to consider sums of the formxvto k,~ ( n ,r, v) B(n,r, v) C(n, r, v,) where A, B, C, . ,are binomialcoefficients, 
depending on v and also on one or two other integral parameters, and where the 
summation proceeds up to the first value of v, for which one of the factors 
vanishes. A certain number of such sums can be found in [I]  and [3]. However, 
the sums computed in (4), do not seem to appear in the literature. They do not 
follow readily by the methods of [3], and a direct proof, or a proof by induction, 
seems rather difficult. In what follows, we give a simple proof of (4), using well-
known properties of Legendre's polynomials Pn(x) and of the hypergeometric 
function F(a, b; c ;  x). 

Let Pn(x)= CkoaT(n)xrbe the nth Legendre polynomial, and let P!'(x) be 
its rth derivative. Then, by Maclaurin's formula, Pn(x)= x:=o~xr~!'(0)/r! ) 
so that 

Here the values of a:) are (see [2], p. 11) 

(n) 1Z 
a, = (-1) 

(2) 
if n E r (mod 2) 

n + r)/2 

= 0 otherwise. 

I t  also is known (see [4], pp. 61-62) that$ the hypergeometric function 

* This paper was prepared under contract with the Office of Naval Research. 
t E.g. the study of the algebraic irreducibility of Legendre's polynomials in the field of ra-

tional numbers. 
$ The idea of this proof is due to Professor E. D. Rainville, who kindly suggested it  to me in 

a letter. 


