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REVIEW SHEET FOR CALCULUS 140

Some of the topics have sample problems from previous finals indicated next to the
headings.

0.1 Chapters 1: Limits and continuity

Theorem 0.1.1 Sandwich Theorem(F ‘96 # 20, F‘97 # 12)
If f(x) ≤ g(x) ≤ h(x) (or f(x) ≥ g(x) ≥ h(x)) on an interval containing c and

limx→c f(x) = limx→c h(x) = b, then limx→c g(x) = b.

Definition 0.1.2 A function f(x) is defined on an interval containing c is continuous at c
if and only if limx→c f(x) = f(c).

Theorem 0.1.3 If f(x) and g(x) are both continuous at c, then so are the functions
i) f(x)± g(x), ii) f(x) · g(x) and iii) f(x)/g(x), in case iii), provided that g(c) 6= 0.

If f(x) is continuous at b and g(x) is continuous at c, with g(c) = b, then f(g(x)) is
continuous at c.

Polynomials are continuous at every point, all trigonometric functions are continuous at
all points where the definition does not involve division by zero, and by the previous theorem,
so all sums products, differences, quotients (excluding division by 0), and compositions of
these. Once we have differentiation at our disposal, there is the following theorem about
continuity.

Theorem 0.1.4 If f(x) is differentiable at c, then f is continuous at c.

Asymptotes(S ‘97 # 15)
Given polynomials, f(x) = anx

n + · · · + a0 and g(x) = bmx
m + · · · + b0, an 6= 0 and

bm 6= 0.

lim
x→∞

f(x)

g(x)
=


i) an/bn if m = n,
ii) 0 if n < m,
iii) ±∞ if n > m

iv) lim
x→∞

f(x)

g(x)
− (

an
bn−1

x) = c <∞ if m = n− 1.

When the function f(x)
g(x)

is graphed, cases i) and ii) correspond to horizontal asymptotes y =
an
bn

and y = 0, respectively, and case iv) corresponds to an oblique asymptote y = an
bn−1

x+ c.

Theorem 0.1.5 Intermediate Value Theorem If f(x) is continuous on the interval
[a, b] and d is some number between f(a) and f(b), then there exist number c in the interval
such that f(c) = d.

Theorem 0.1.6 Extreme Value Theorem If f(x) is continuous on the interval [a, b],
then there exist numbers c, d in the interval such that f(c) ≤ f(x) ≤ f(d) for all x in the
interval.
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0.2 Chapters 2-3 and parts of Chapter 6:Differentia-

tion

Rules for derivatives(F‘96 #14, F ‘97 #3, S ‘98 #20)

1. Product rule: [f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x).

2. Quotient rule:
[
f(x)
g(x)

]′
= f ′(x)g(x)−f(x)g′(x)

(g(x))2 .

3. Chain rule: [f(g(x))]′ = f ′(g(x))g′(x). Used in related rates problems.

4. Some derivatives: (xa)′ = axa−1, (eax)′ = aeax, for all real a 6= 0, and (ax)′ = ln(a)ax,
[ln(x)]′ = 1

x
, [loga(x)]′ = 1

ln(a)x
for a > 0.

Tangent line and linear approximation (F ‘98 # 5, F ‘98 #20, F‘99 #6, S 2000
#16)

If the function f(x) is differentiable at x = a, the tangent line to the graph y = f(x) at
the point (a, f(a)) is y = f(a) + f ′(a) · (x − a). The function `(x) = f(a) + f ′(a) · (x − a)
is called the linear approximation to f(x) at x = a. The expression df = f ′(a)dx is called
the differential. Substituting dx = x − a, the differential is the linear approximation to
∆f = f(x)− f(a).

Implicit differentiation(F ‘96 #6, S ‘97 #19, F‘97 #13, S‘98 #15, S‘99 #4)
The curve described by f(x, y) = 0 has tangent line at the point (a, b) given by the

equation y = b+ y′(a) · (x− a), where y′(a) solves the equation given by differentiating the
original equation with respect to x, treating y as a function of x and using the standard
rules, and finally substituting x = a, y = b.

For example, the curve x2 + xy + y3 = 7 has tangent line at the point (2, 1) given by
the equation y = 1 − (x − 2) = 3 − x, as we see from differentiating the equation to get
2x + y + xy′ + 3y2y′ = 0, substituting x = 2, y = 1 and solving for y′(2), which gives
y′(2) = −1.

Theorem 0.2.1 Mean Value Theorem If f(x) is differentiable on the open interval (a, b)
and continuous on the closed interval [a, b], then there is a number c in the interval such that
f ′(c) = [f(b)− f(a)]/(b− a).

Some useful consequences of the Mean Value Theorem
Let f(x) be a differentiable function defined on the interval I

1. If f ′(x) = 0 on I, then f(x) is constant.

2. If f ′(x) > 0 on I, then f(x) is increasing.

3. If f ′(x) < 0 on I, then f(x) is decreasing.( S ‘97 #14)

4. If f ′′(x) > 0 on I, then the graph of f(x) is concave up.(F‘96 #18)

5. If f ′′(x) < 0 on I, then the graph of f(x) is concave down.(S‘98 #7. F‘99 #7)
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6. If f ′(c) = 0 and f ′′(c) > 0, then c is a local minimum. (F‘98 #14, F‘96 #4, Remember
to check endpoints when looking for max-min on [a,b])

7. If f ′(c) = 0 and f ′′(c) < 0, then c is a local maximum. (S‘98 #18)

8. If f ′′(c) = 0, and f ′′(x) is of opposite sign for x < c and x > c, then c is a point of
inflection.(S‘98 #19)

Theorem 0.2.2 l’Hôpital’s rule (Chapter 6) (S‘98 #2, F‘98 # 1,2,4, F‘99 #16)
If limx→a f(x) = limx→a g(x) = 0 or both limits equal ∞, and g(x) 6= 0 on an interval

containing a, then

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)

Some examples:

1. limx→0 sin(x)/x = limx→0 cos(x)/1 = 1.

2.

lim
x→0

xaln(x) = lim
x→0

ln(x)/x−a = lim
x→0

[1/x]/[(−a)x−a−1] = lim
x→0

1

(−a)
xa = 0 for all a > 0.

3.

lim
x→∞

xn

ex
= differentiating n-times lim

x→∞
n!

ex
− 0 for all positive integers n.

4. limx→0(1 + ax)
1
x = limx→∞(1 + a

x
)x = ea, for all a.

The third example is proved using the following useful fact If limx→a ln(f(x)) = L, then
limx→a f(x) = eL.

Exponential growth and decay: ( F ‘97 # 19, S ‘98 # 3 (growth), F ‘99 #14)

A(t) = A0e
kt, where A0 is the initial amount.

For radioactive decay, k = −ln(2)
T

where T is the half-life.
Derivative of the inverse function(F‘96 #23, F ‘97 #16, S‘97 #6, S ‘99 #15)
If f(x) is one-to-one on the interval I, then there is an inverse function on the image of

the interval, f(I). If f(x) is differentiable at the point a in I and f ′(a) 6= 0, then the inverse
function f−1(x) is differentiable and

[f−1(x)]′|x=f(a) = 1/[f ′(a)].
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0.3 Chapters 4-7 : Integration

Riemann sums: (F‘96 #11)
If f(x) is continuous on the interval [0, 1], then

lim
n→∞

n∑
i=1

1

n
f(
i

n
) =

∫ 1

0
f(x)dx.

Initial value problems (S‘98 #16)
The initial value problem y′ = f(x), y(a) = b is solved by first finding the indefinite

integral (set of antiderivatives) of f(x) and then choosing the “free constant” so that the
value of the antiderivative at x = a is b.

Example: y′ = 2x3 + x, y(1) = 2. The indefinite integral of 2x3 + x is 1
2
(x4 + x2) + c.

Setting x = 1, we see that 1 + c = 2, so c = 1. The solution is y = 1
2
(x4 + x2) + 1.

Integration by substitution or reading the chain rule backwards(Many examples,
S ‘97 #3, F‘97 #10, S‘98 #6, F‘98 #19, S‘99, #11, F‘99 #10, 11)∫

f(u(x))u′(x)dx =
∫
f(u)du, or as a definite integral

∫ b

a
f(u(x))u′(x)dx =

∫ u(b)

u(a)
f(u)du.

Integration by parts or reading the product rule backwards (F‘96 #13, S‘97 #1)∫
udv = uv−

∫
vdu, as a definite integral

∫ b

a
u(x)v′(x)dx = u(b)v(b)−u(a)v(a)−

∫ b

a
v(x)u′(x)dx.

Average value of f(x)

mina<x<bf(x) ≤ 1

b− a

∫ b

a
f(x)dx ≤ maxa<x<bf(x).

Theorem 0.3.1 Fundamental Theorem of Calculus (F‘97 #6,S‘97 #11)

d

dx

(∫ x

a
f(t)dt)

)
= f(x).

Note: To differentiate
∫ u(x)
a f(t)dt with respect to x, when the upper limit is a function u(x),

use the chain rule.
Area between curves(F‘97#15, F‘99 #9)
If f(x) and g(x) are continuous on [a, b] and f(x) ≥ g(x) on that interval, then the area

of the region bounded by the graphs y = f(x), y = g(x) and the vertical lines x = a, x = b
is given by the definite integral

∫ b
a [f(x)− g(x)]dx.

If the region is between curves x = h(y) and x = k(y) which are graphs over the x-axis
with h(y) ≤ k(y) on the interval c ≤ y ≤ d then the area of the region bounded by the
graphs and the horizontal lines y = c and y = d is

∫ d
c [k(y)− h(y)]dy.

A region may satisfy both conditions. For example the region between the curves y = 2x
and y = x2 lies over the interval 0 ≤ x ≤ 2, but it is also the region between x = y

2
and

x =
√
y over the interval 0 ≤ y ≤ 4. The area is calculated either by∫ 2

0
[2x− x2]dx =

4

3
or

∫ 4

0
[
√
y − y

2
]dy =

4

3
.
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Volumes by slicing( F‘96 #16,19, F‘97 B2, F‘98 #9)
The volume of known cross-sectional area A(x) from x = a to x = b is given by the

integral
∫ b
a A(x)dx. This gives the Washer formula for the volume of a solid of revolution

given by rotating the region between the curves y = f(x) and y = g(x) over the interval
[a, b] around the x-axis, (where f(x) ≥ g(x) on [a, b]) :

V =
∫ b

a
π[f(x)2 − g(x)2]dx.

If the region is also described as being between the curves x = k(y) and x = h(y) over
the interval c ≤ y ≤ d, but we still rotate it around the x-axis, then the volume is given by
the method of Cylindrical shells:

V =
∫ d

c
2πy[k(y)− h(y)]dy.

Note that the formula in the book on page 389 uses f(y) instead of k(y)−h(y). These both
mean the height of the cylindrical shell. In the washer formula the generating segment is
perpendicular to the axis of rotation, whereas, in the cylindrical shell formula the generating
segment is parallel to the axis. See page 391 in the book.

Partial fractions (S ‘97 #4, F‘97#9,10 F‘98 #6)
To integrate a rational function f(x)/g(x), first make sure the expression is in reduced

form with deg(f) < deg(g) (dividing if necessary). Then factor the denominator g(x) into a
product of linear factors x− r corresponding to real roots and quadratic factors x2 + bx+ c
corresponding to compex roots. Then expand the expression in partial fractions as a sum of
terms C

(x−r)m , where m runs from 1 to the highest power of x− r in the factorization of g(x)

and terms Ax+B
(x2+bx+c)k

, where k is the highest power of x2 + bx+ c in the factorization of g(x).
In most of the examples, the highest power for both cases is 1.

Remember that when x− r occurs just once as a factor in g(x), then the coefficient C in
C

(x−r) is easily calculated by cancelling the term x− r in g(x) and substituting x = r in the

remaining terms of f(x) and g(x).
For example: 1/[(x − 1)(x − 2)(x − 3)] = a

(x−1)
+ b

(x−2)
+ c

(x−3)
. So a = 1/[(−1)(−2)],

b = 1/[(1)(−1)] and c = 1/[(2)(1)].

∫
dx/[(x− 1)(x− 2)(x− 3)] =

∫ 1/2

(x− 1)
dx+

∫ −1

(x− 2)
dx+

∫ 1/2

(x− 3)
dx

=
1

2
ln |x− 1| − ln|x− 2|+ 1

2
ln|x− 3|

= ln(
√
|(x− 1)(x− 3)/|x− 2|).

Improper integrals (S‘97 #9, F ‘98 # 8, S ‘98 # 5, S‘99 #24)
If f(x) is continuous on the half open interval (a, b] and limx→a+ f(x) = ±∞ then the∫ b

a f(x)dx is called an improper integral and it is defined as a limit:∫ b

a
f(x)dx = lim

c→a+

∫ b

c
f(x)dx
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Similarly, if f(x) is continuous on the half open interval [a, b) and limx→b− f(x) = ±∞∫ b

a
f(x)dx = lim

c→b−

∫ c

a
f(x)dx

Integrals over an infinite interval are also improper integrals, and are defined as limits∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a
f(x)dx,

∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a
f(x)dx.

Examples:∫ ∞
a

dx

xk
= lim

b→∞

∫ b

a

dx

xk

=

{
limb→∞

1
1−kx

1−k|ba = limb→∞
1

1−kb
1−k − 1

1−ka
1−k for k 6= 1

limb→∞ lnb− lna for k = 1.

=

{
a1−k/(k − 1) for k > 1
∞ for k ≤ 1.

∫ b

0

dx

xk
= lim

a→0+

∫ b

a

dx

xk

=

{
lima→0+

1
1−kb

1−k − 1
1−ka

1−k for k 6= 1
lima→0+ lnb− lna for k = 1.

=

{
b1−k/(1− k) for k < 1
∞ for k ≥ 1

Another example (using the calculation from the partial fractions example given above)∫ ∞
4

dx/[(x− 1)(x− 2)(x− 3)] =

lim
b→∞

ln(
√
|(b− 1)(b− 3)/|b− 2|) − ln(

√
|(4− 1)(4− 3)/|4− 2|) = ln(

√
3/2),

because limb→∞(
√
|(b− 1)(b− 3)/|b− 2|) = 1 and ln(1) = 0.

However, if we consider the improper integral
∫∞

3 dx/[(x − 1)(x − 2)(x − 3)], then we
need to pick some midpoint where there is no discontinuity, for example, x = 4 and consider
limits at both endpoints∫ ∞

3
dx/[(x−1)(x−2)(x−3)] = lim

a→3+

∫ 4

a
dx/[(x−1)(x−2)(x−3)]+ lim

b→∞

∫ b

4
dx/[(x−1)(x−2)(x−3)].

We just calculated he second limit and it is finite, but the first limit

lim
a→3+

∫ 4

a
dx/[(x− 1)(x− 2)(x− 3)] = lim

a→3+
[ln(
√

3/2)− ln(
√
|(a− 1)(a− 3)/|a− 2|)]

is infinite, so the improper integral
∫∞
3 dx/[(x− 1)(x− 2)(x− 3)] diverges.


