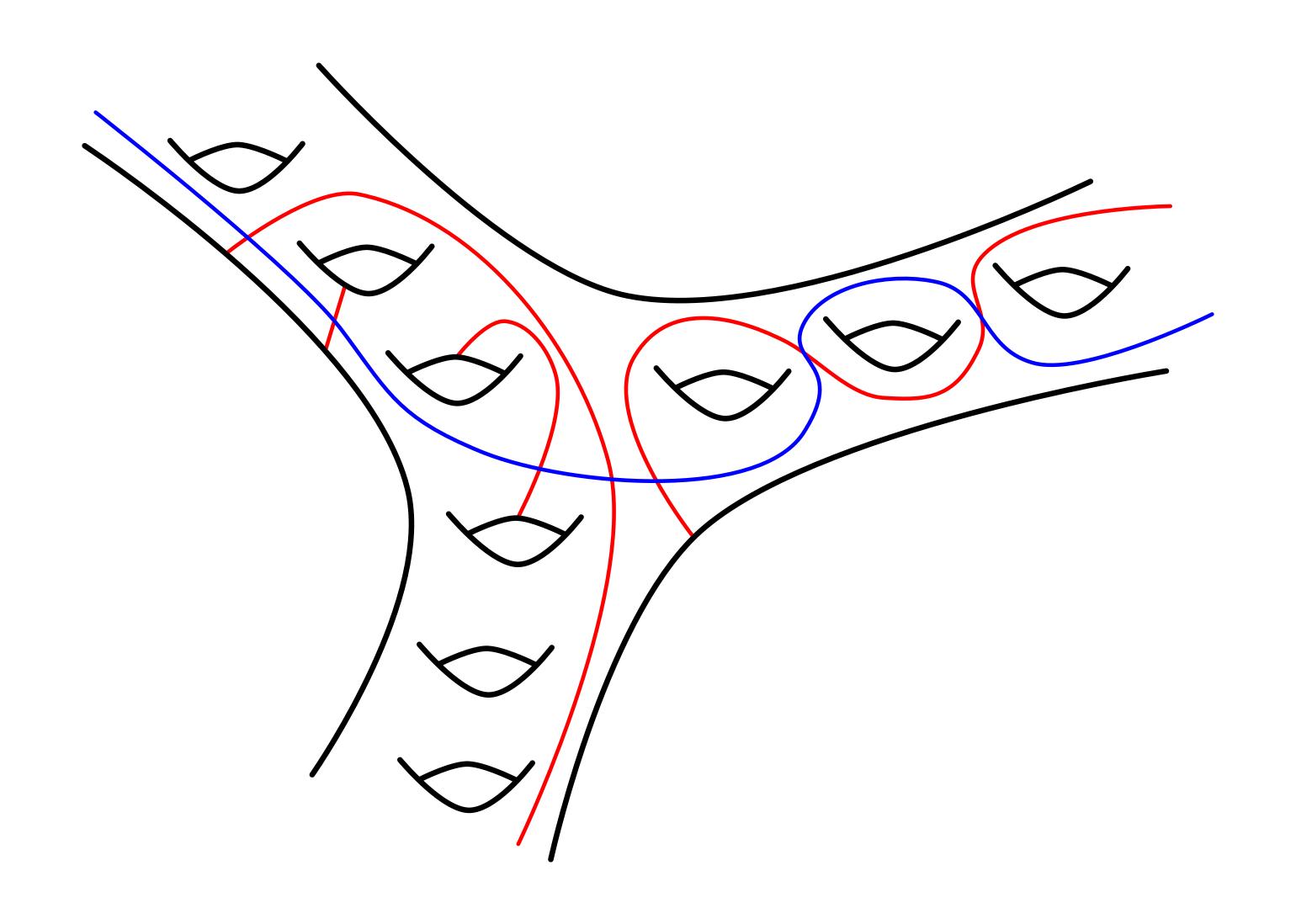
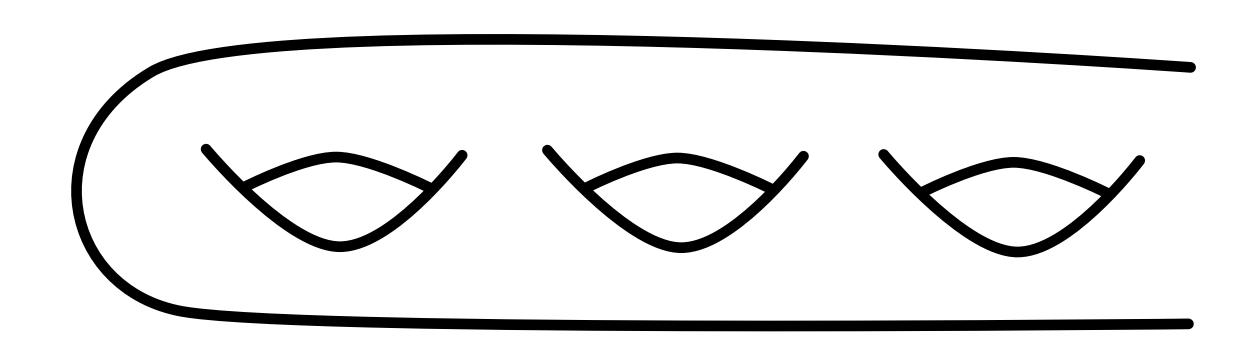
Homeomorphic subsurfaces and the omnipresent arcs

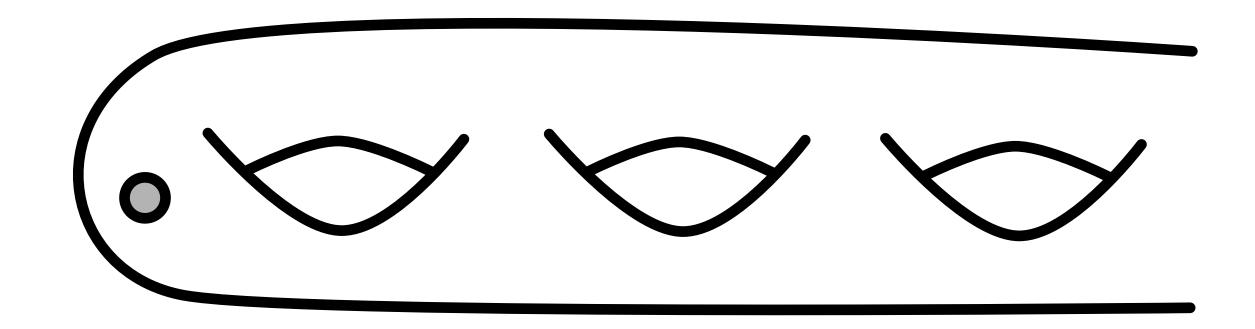
Alan McLeay joint with Federica Fanoni and Tyrone Ghaswala



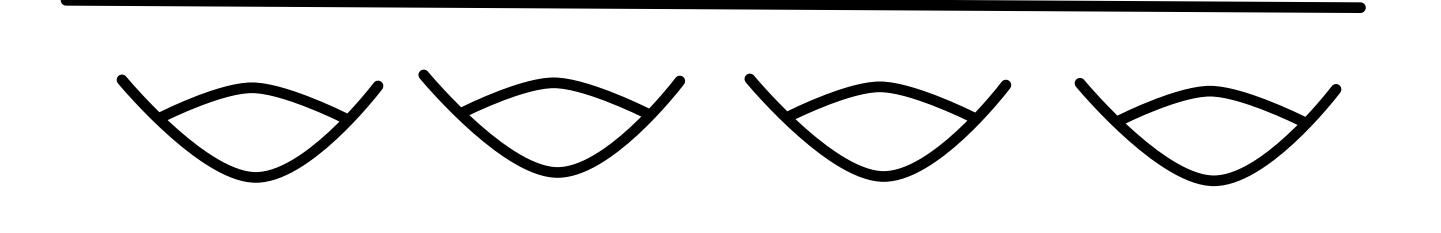
A surface Σ is of infinite-type if $\pi_1(\Sigma)$ is not finitely generated.



The Loch Ness Monster L_1



The punctured Monster L_1°



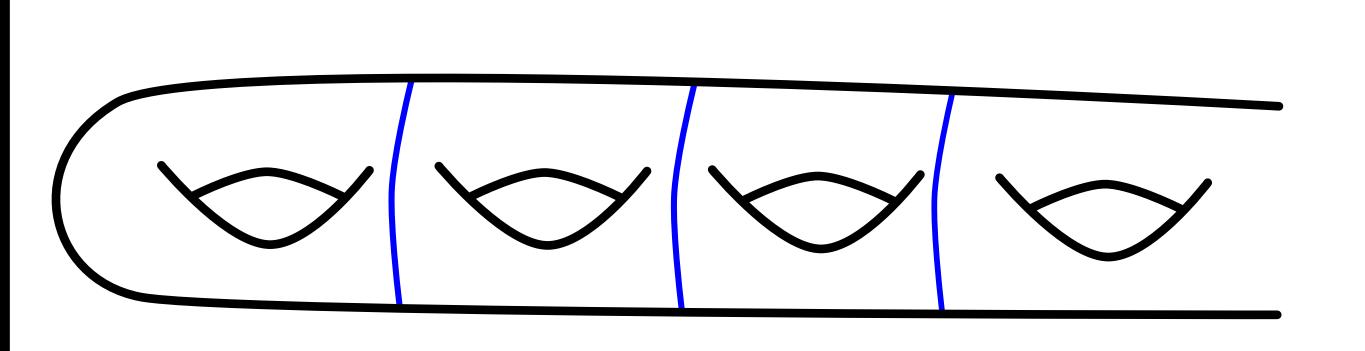
The Ladder L_2

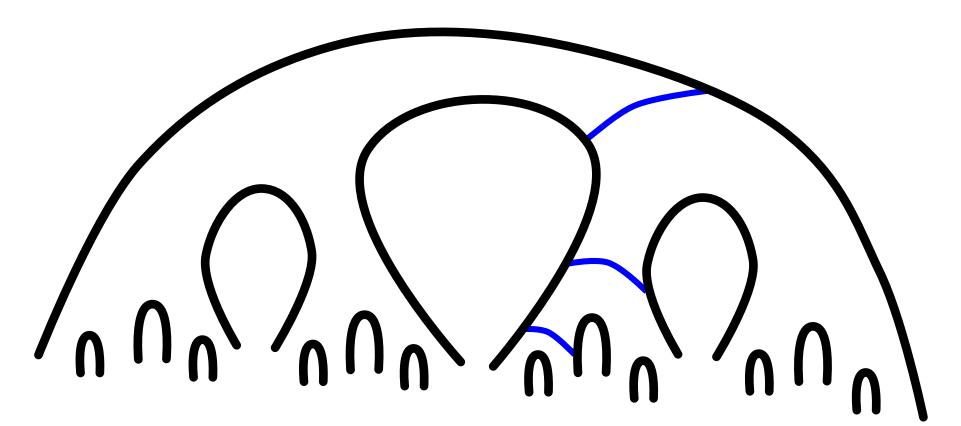
The Cantor Tree

An end is where the surface "goes off to infinity".

Admissable chain: $U_1 \supset U_2 \supset \dots$

 $U_i \subset \Sigma$ noncompact, and ∂U_i a separating curve for every compact $K \subset \Sigma$, $U_n \cap K = \emptyset$, for large n.





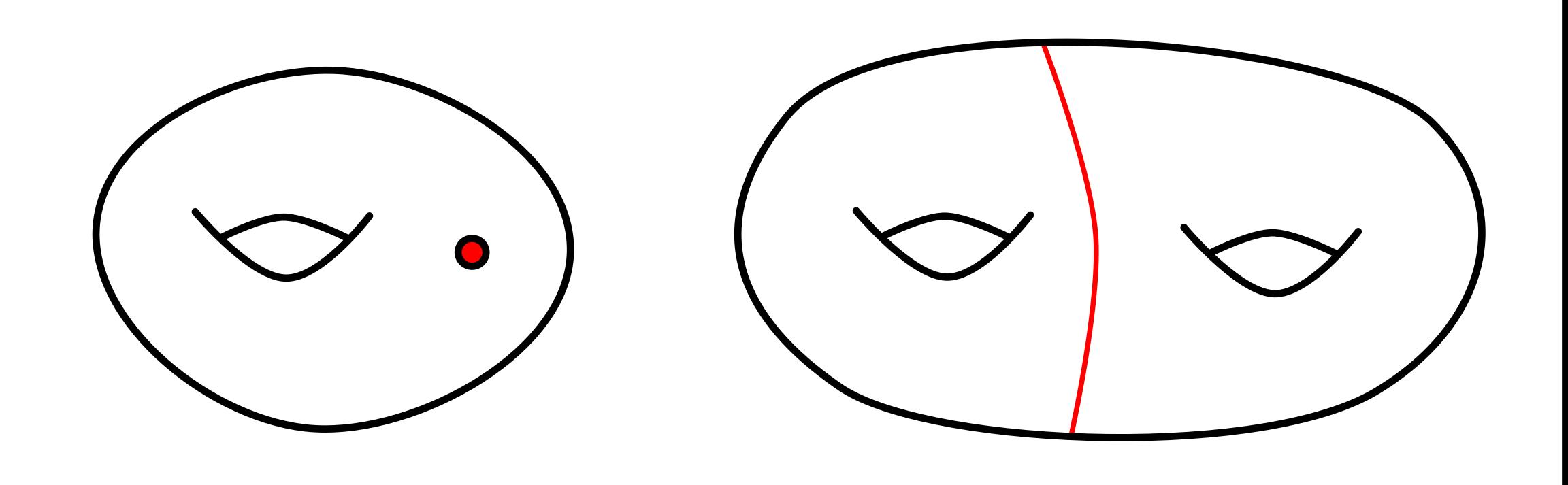
$$U_1 \supset U_2 \supset \ldots \sim V_1 \supset V_2 \supset \ldots$$

if $\forall n \exists N$ such that $U_n \subset V_N$ and vice versa.

An end is
$$e = [U_1 \supset U_2 \supset \ldots]$$

If every U_i has genus then e is nonplanar, and planar otherwise.

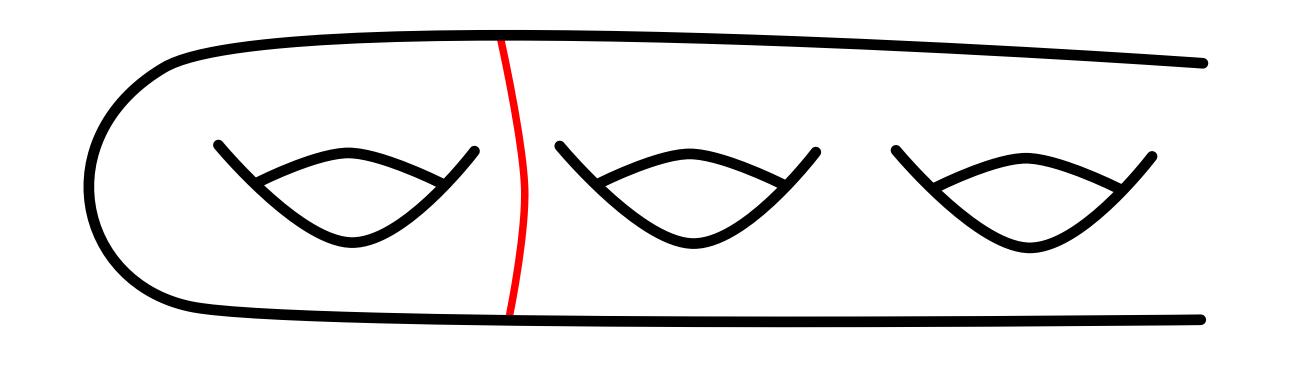
Does it make sense to say one surface is bigger than another?

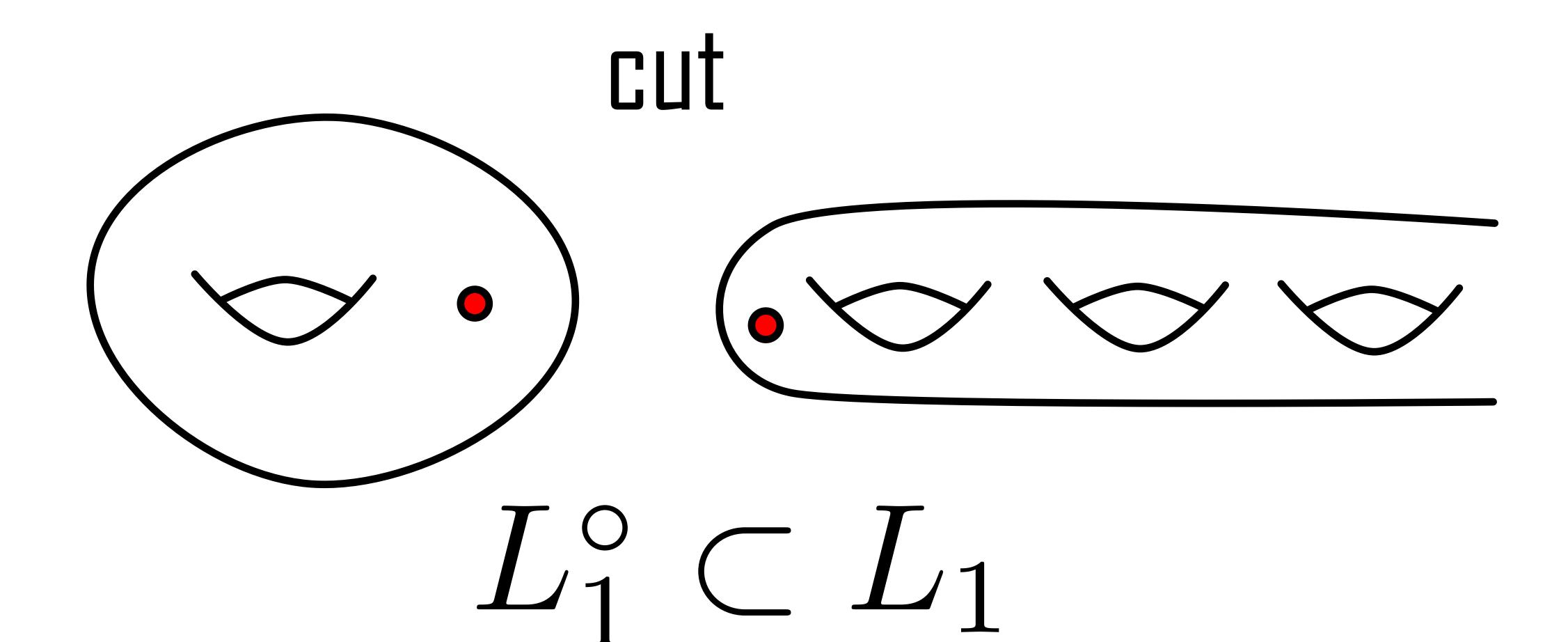


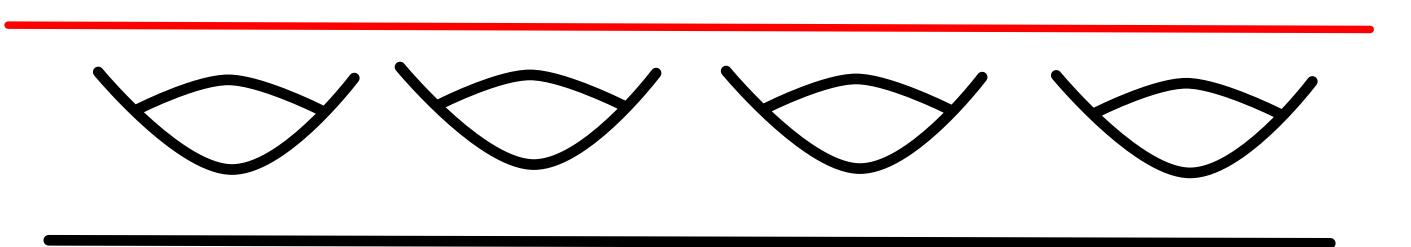
$$\Sigma_1^{\circ} \subset \Sigma_2 \text{ and } \Sigma_2 \not\subset \Sigma_1^{\circ}$$

Given two infinite-type surfaces, when can one be realized as a subsurface of the other?

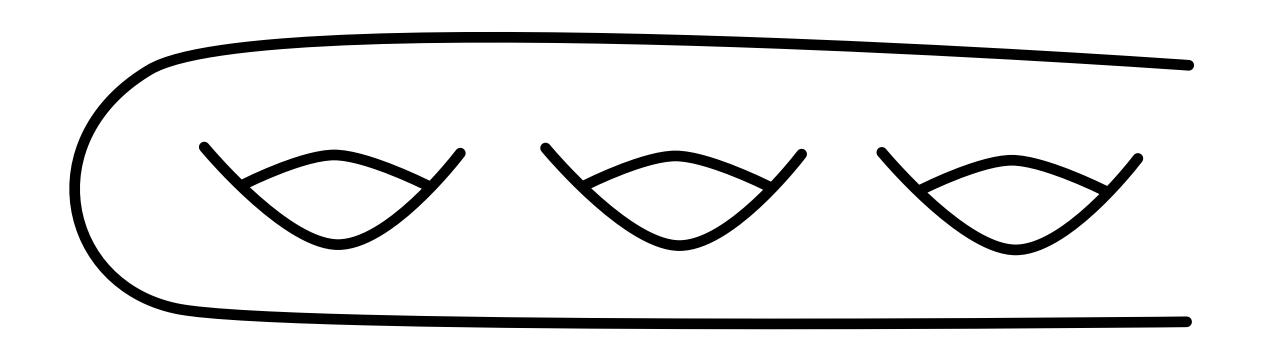
Restrict focus to cutting along arcs or curves.



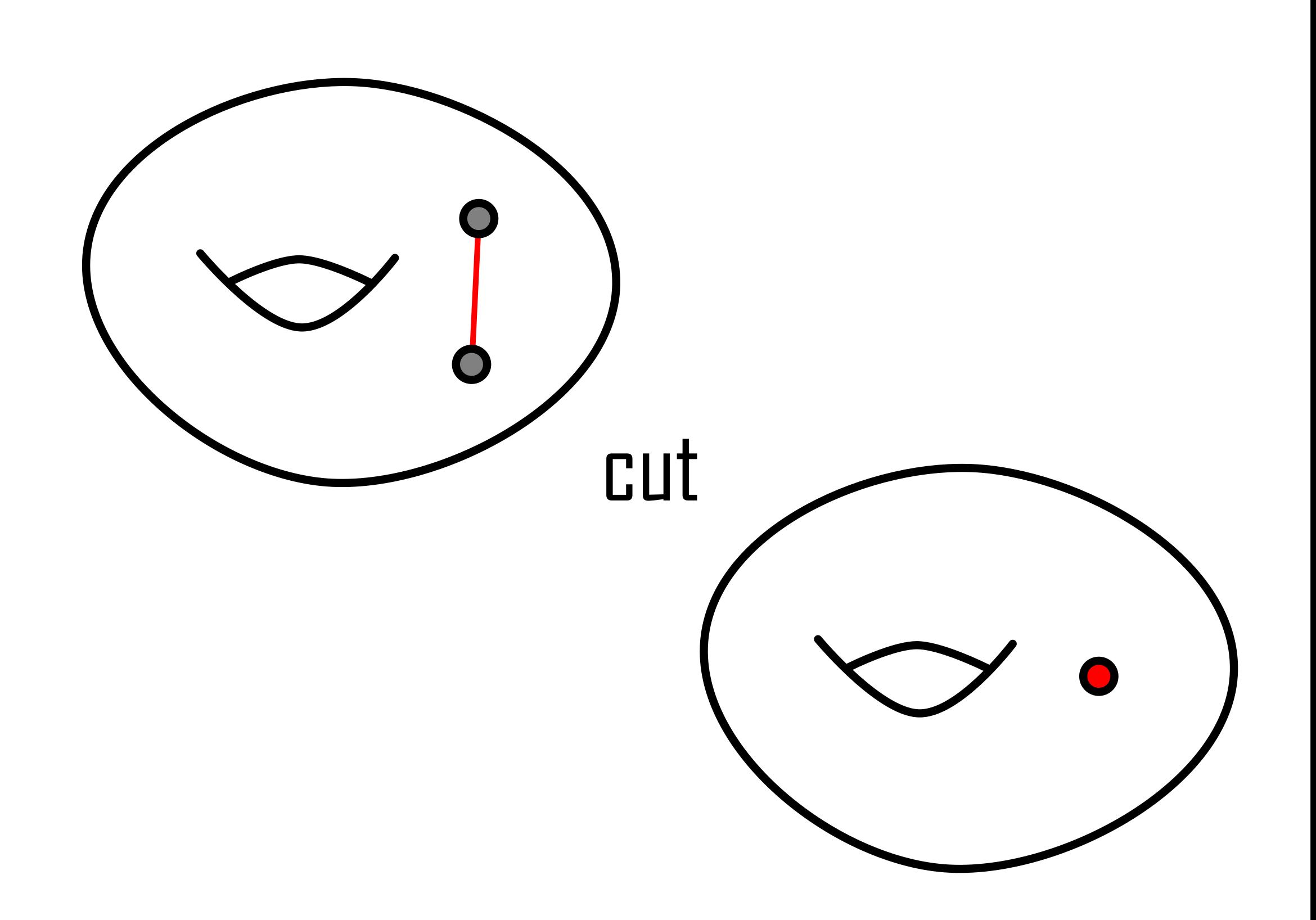


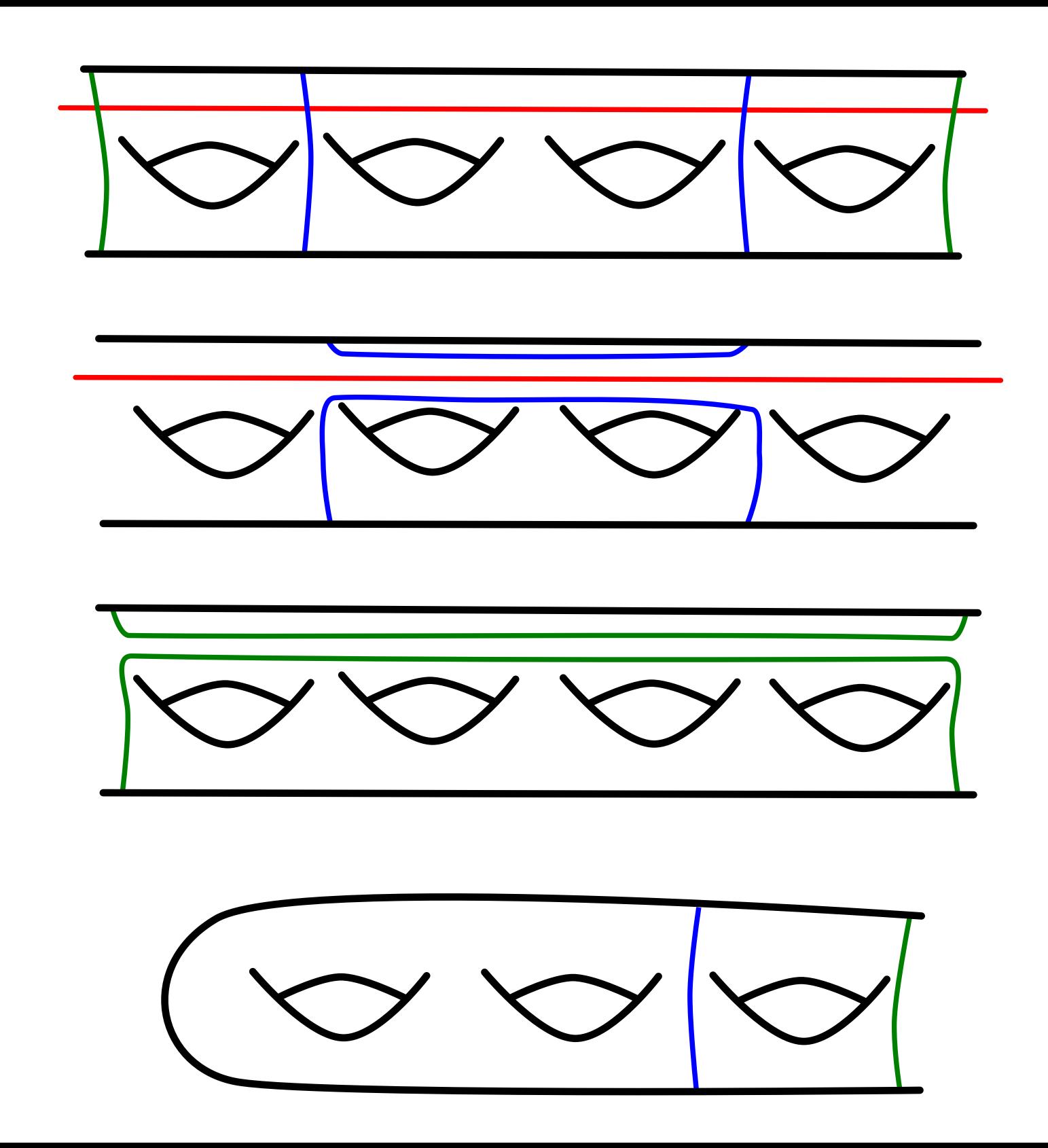


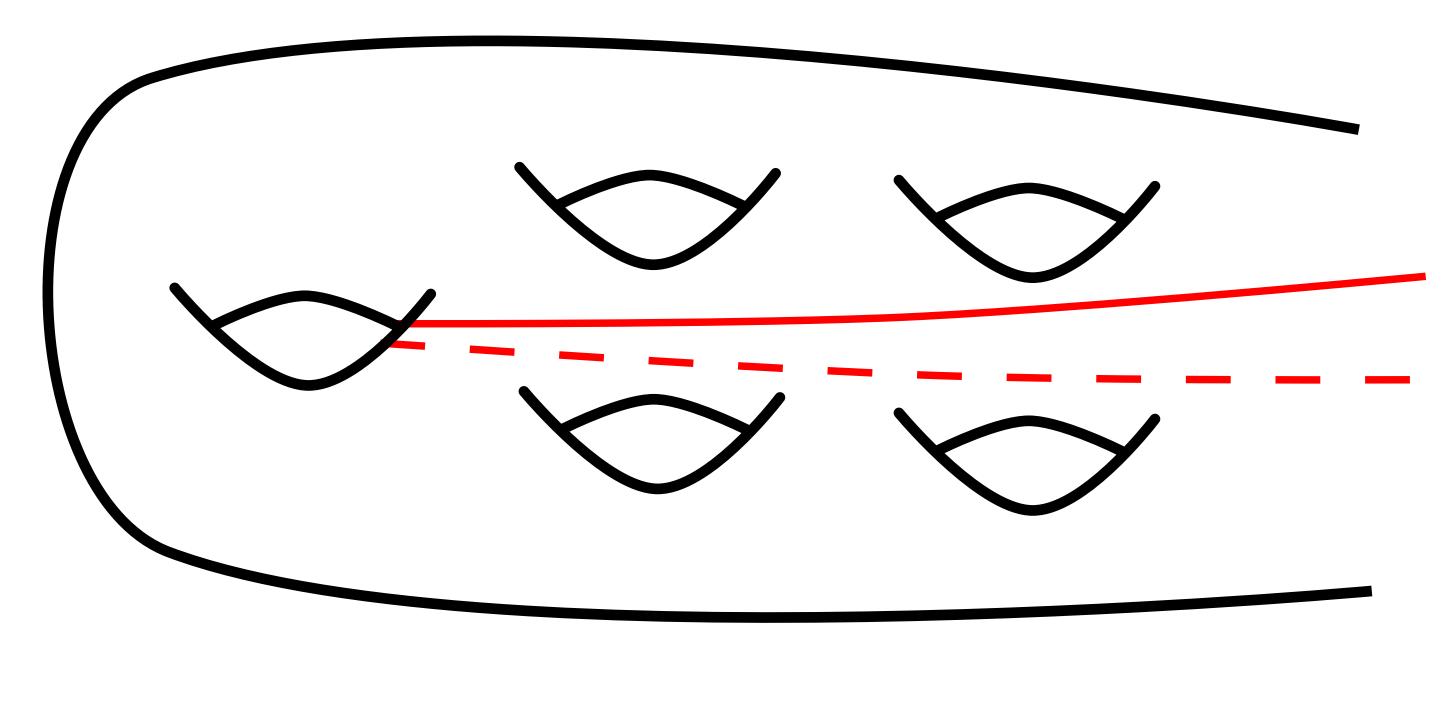
CUt



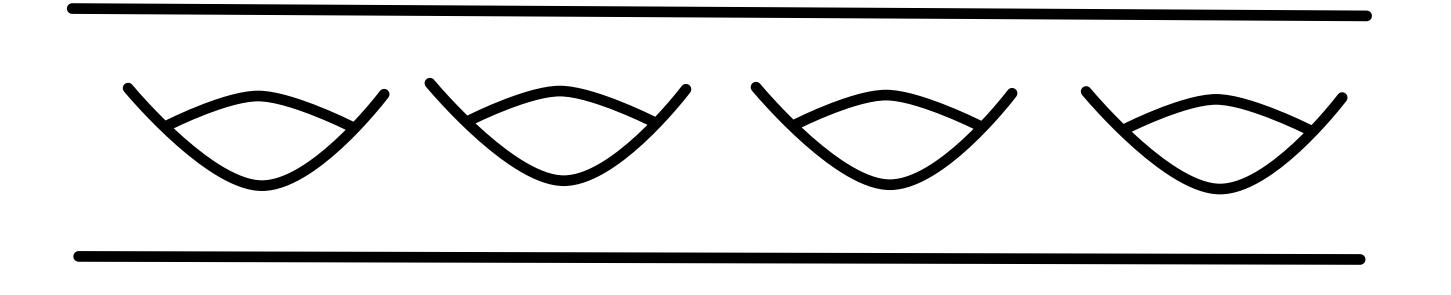
 $L_1 \subset L_2$



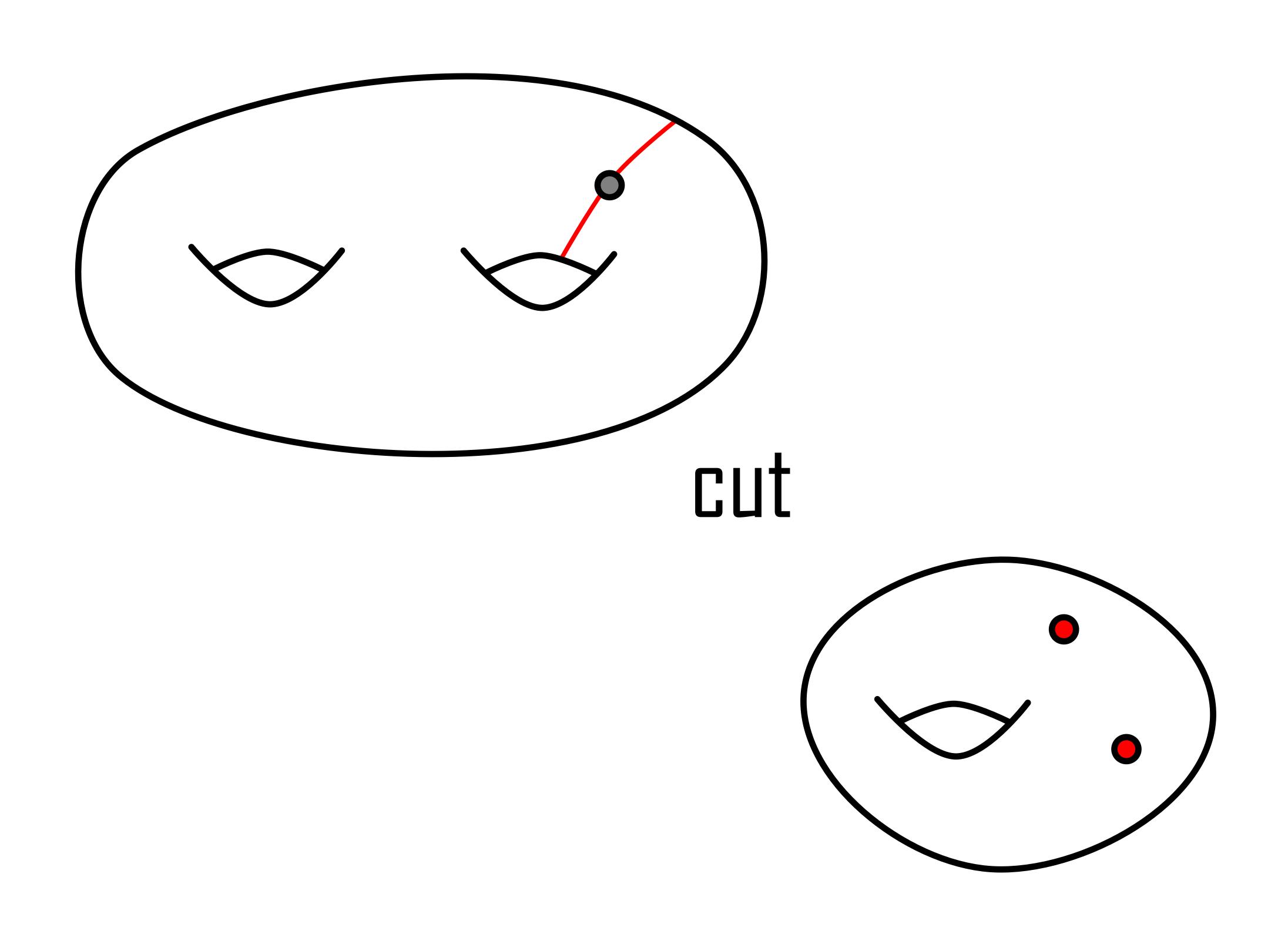


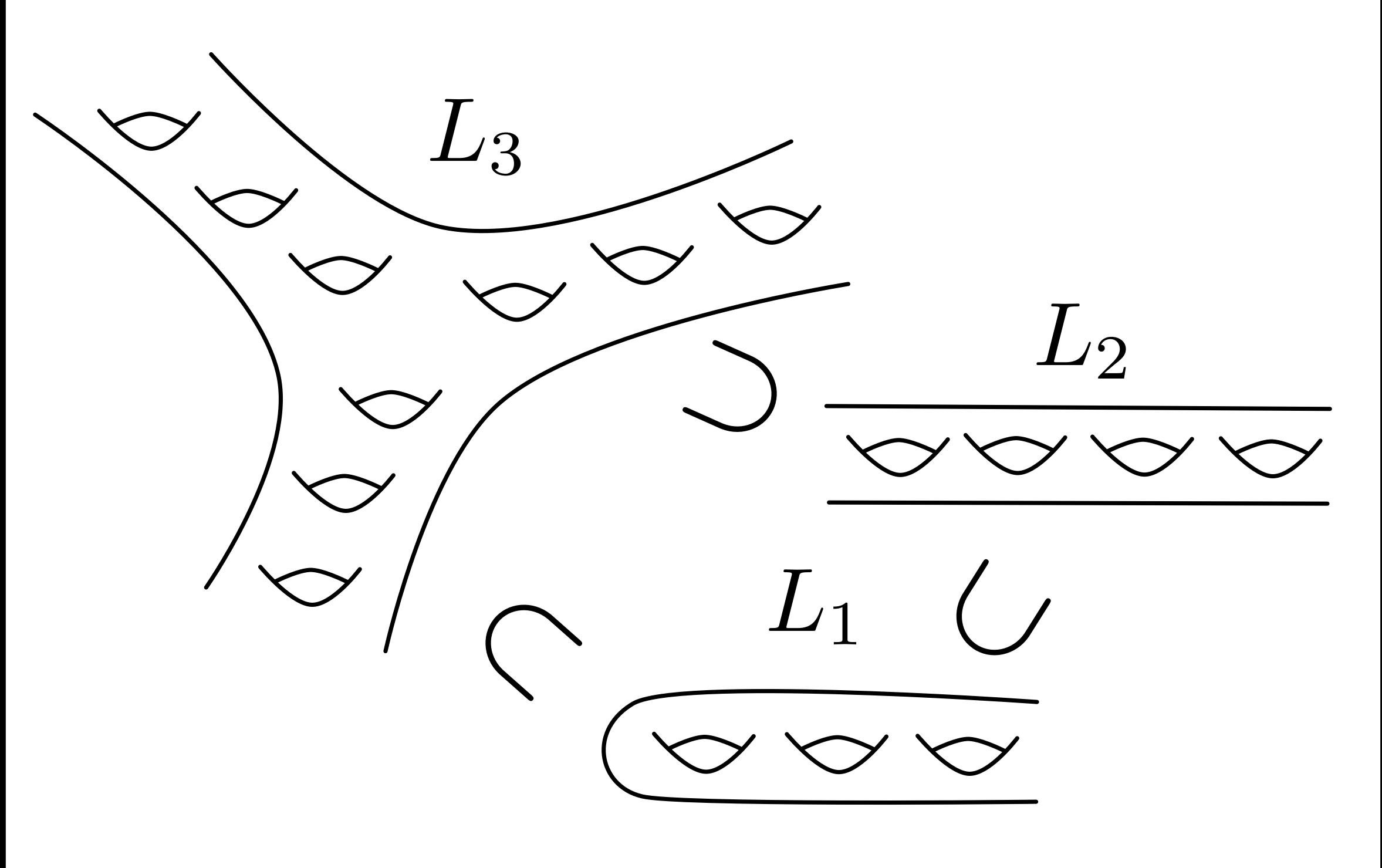


CUt



 L_2 \subset L_1

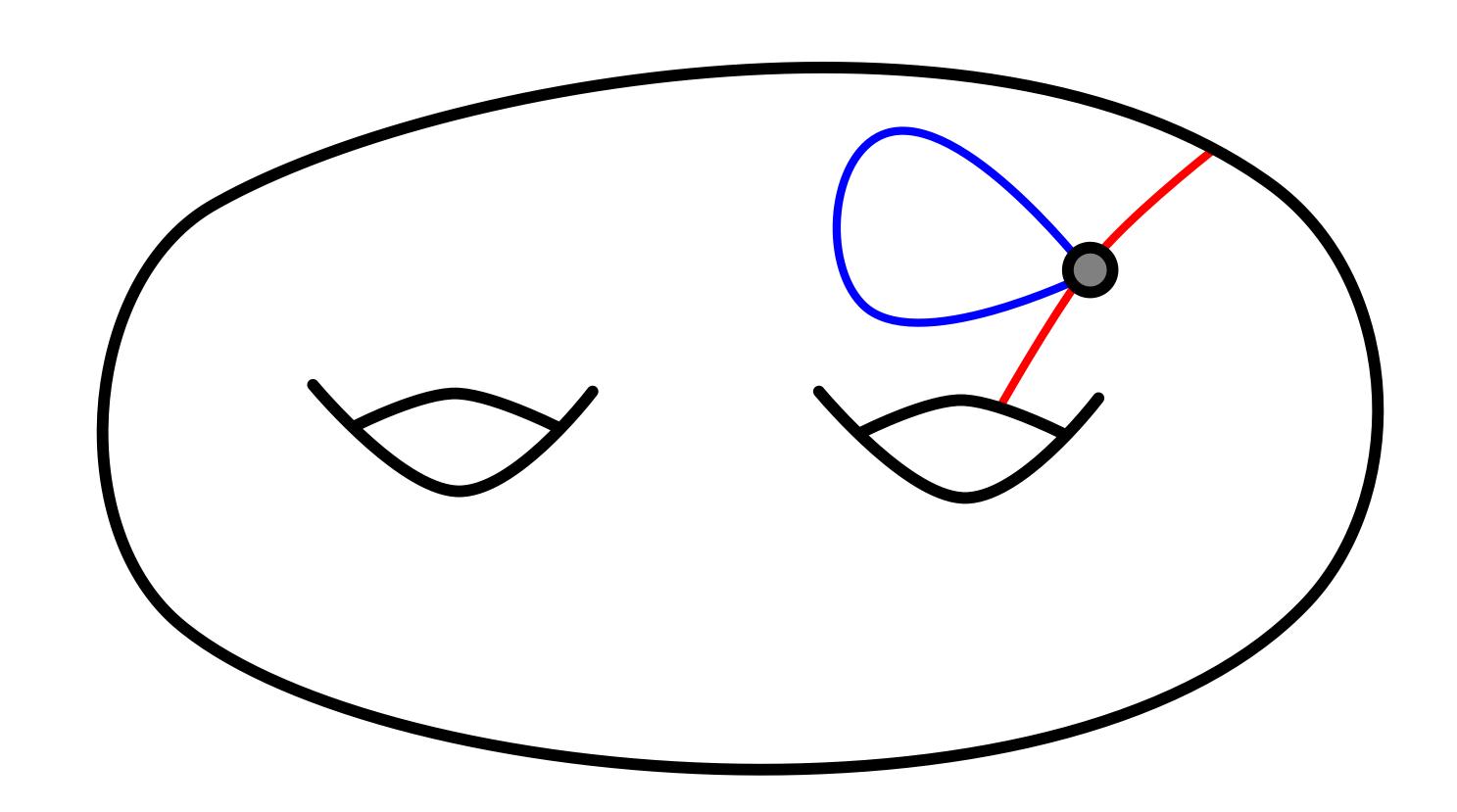




 $L_n \subset L_m \text{ for any } n, m \in \mathbb{N}$

If α is a separating arc, call a component S of $\Sigma \setminus \alpha$ a one-cut subsurface.

If Σ is finite-type then $S \not\cong \Sigma \Leftrightarrow \alpha$ is essential.



If $S \cong \Sigma$, call it a homeomorphic one-cut subsurface.

Are there infinite-type surfaces

containing (essential) homeomorphic one-cut subsurfaces?

Theorem (Fanoni-Ghaswala-M)

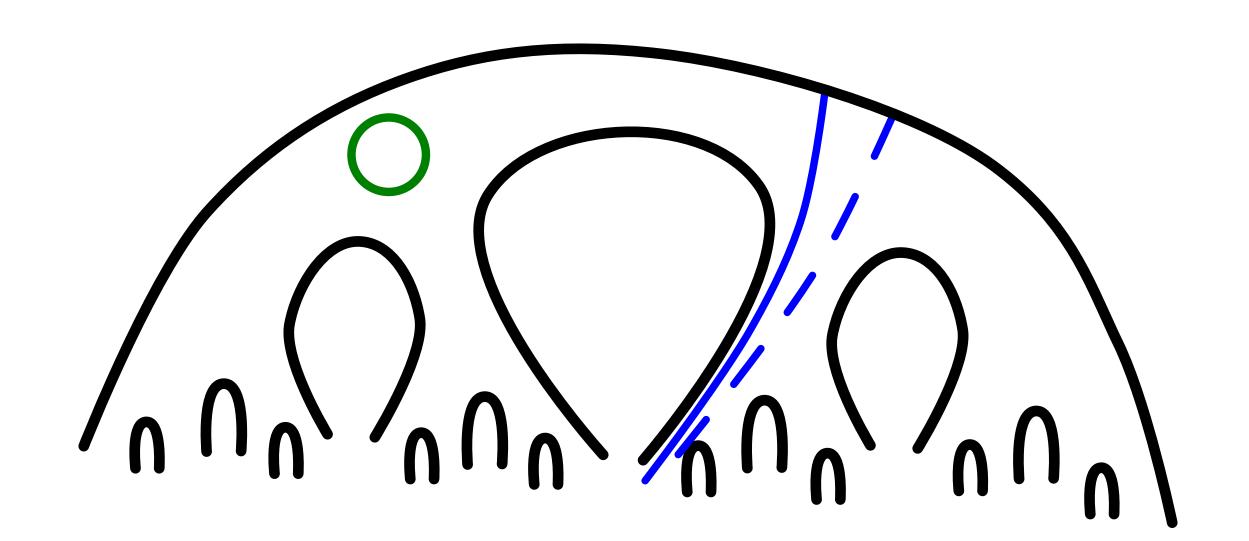
A surface is infinite-type \Leftrightarrow it contains essential one-cut homeomorphic subsurfaces.

Proof by pictures

Case 1- There is an isolated nonplanar end.

Case 2- Infinitely many isolated planar ends.

Case 3- Finite genus, all planar ends nonisolated.



Case 4- Infinite genus, all nonplanar ends nonisolated.

Finite-type: α is essential \Leftrightarrow it intersects every homeomorphic one-cut subsurface.

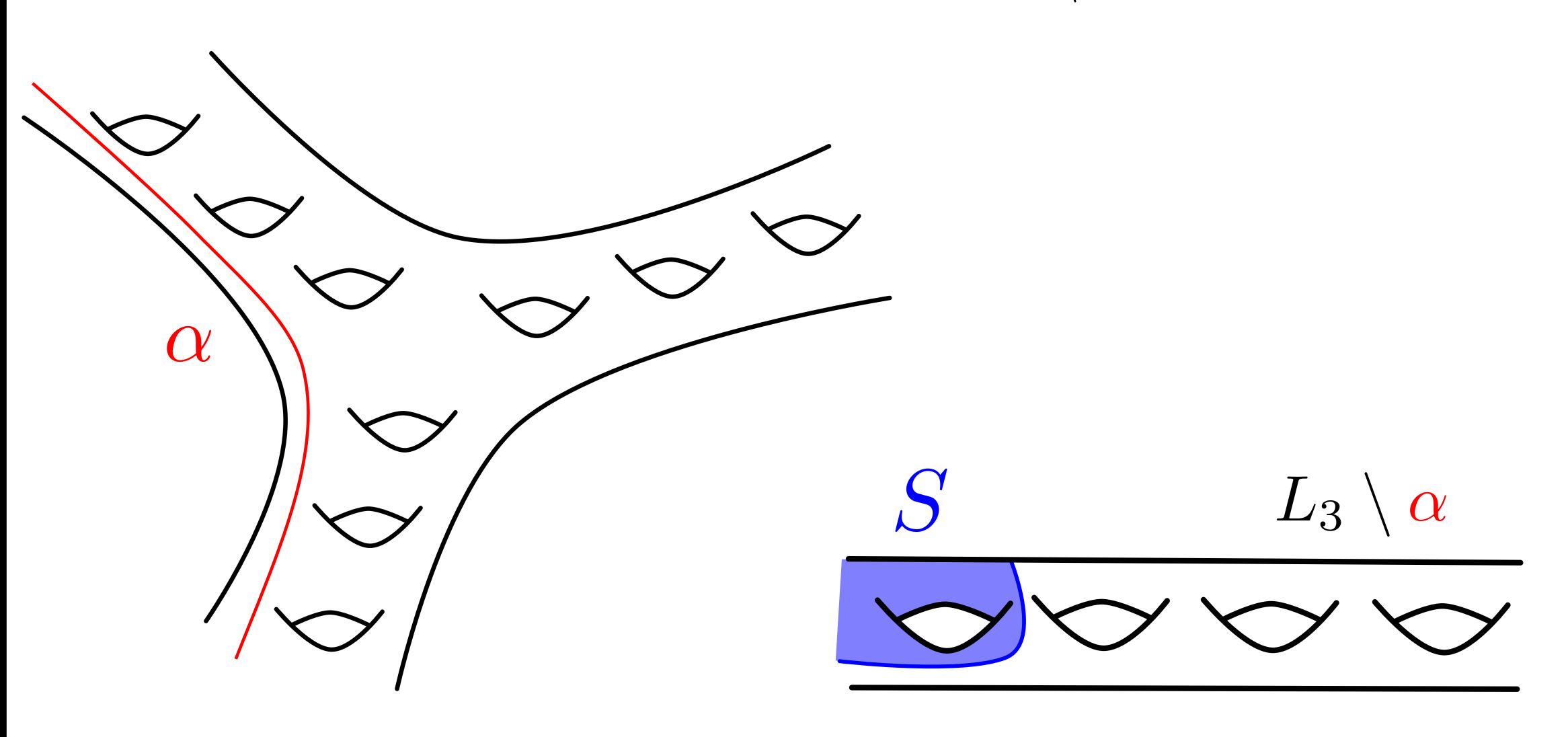
Infinite-type: Not true!

 α is omnipresent if it is 2-ended and it intersects every homeomorphic one-cut subsurface.

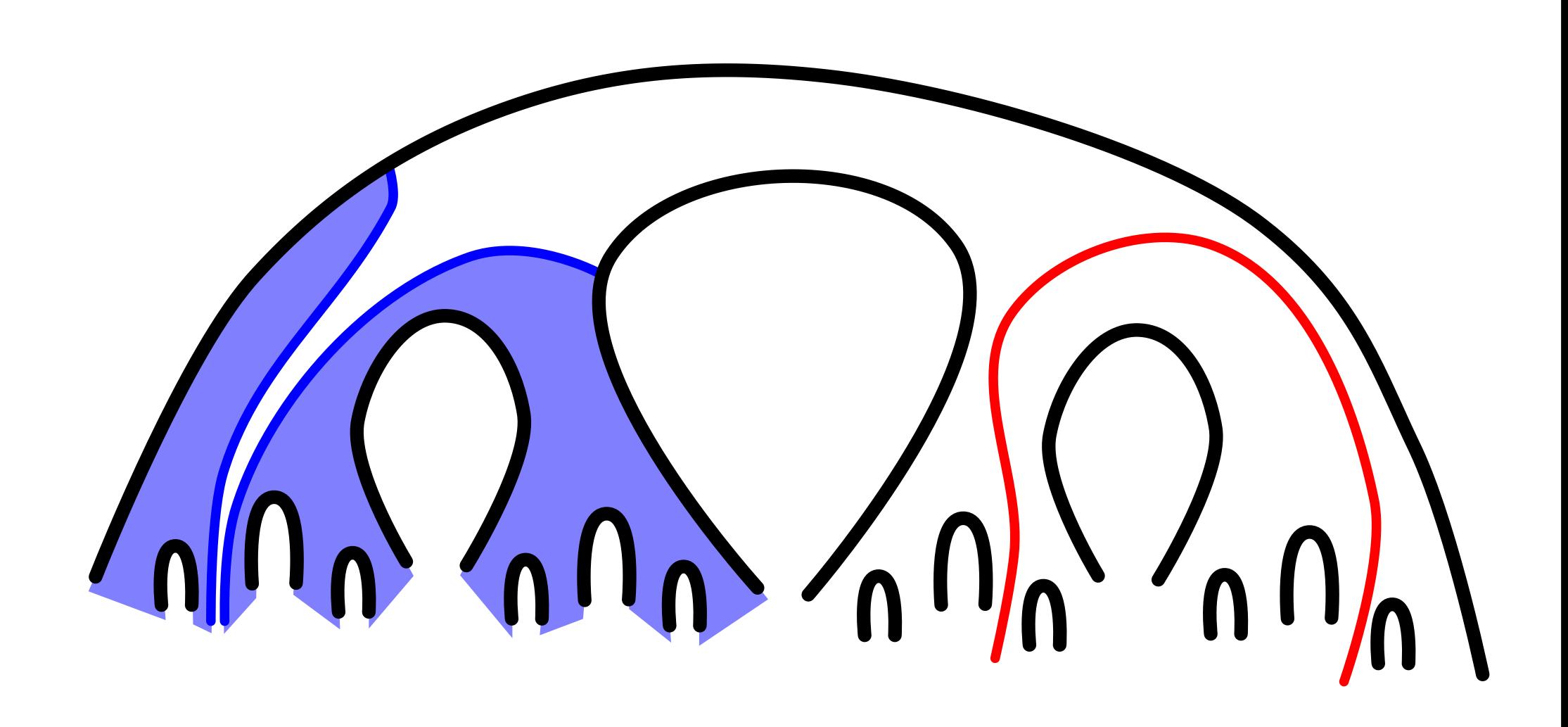
Every 2-ended arc in L_3 is omnipresent.

 α not omnipresent \Rightarrow

There exists a one-cut subsurface S of $L_3 \setminus \alpha$ such that $S \cong L_3$.



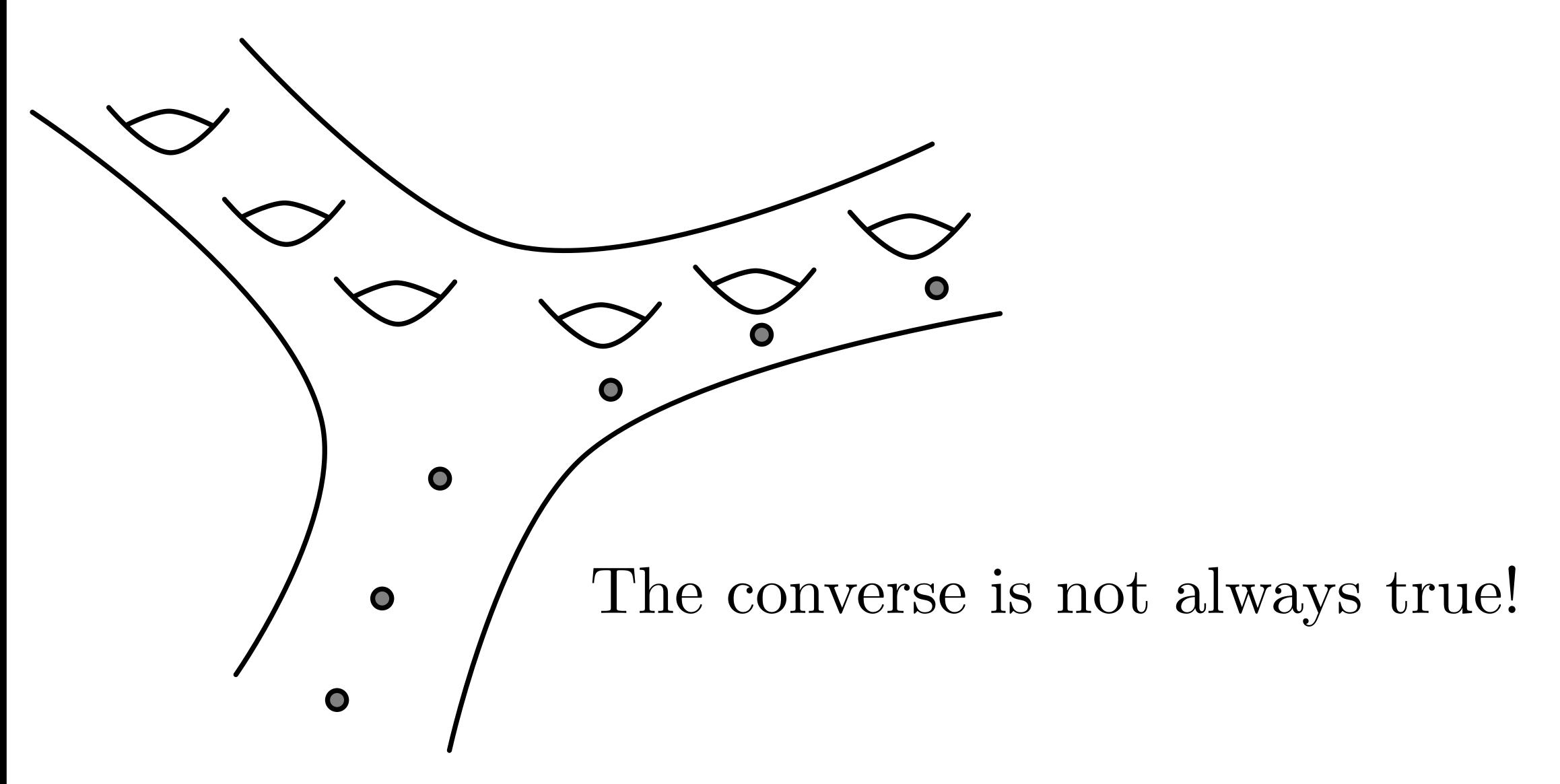
The Cantor Tree has no omnipresent arcs.



$$Map(\Sigma) = Homeo^+(\Sigma)/isotopy$$

A finite orbit end is an end with finite $Map(\Sigma)$ -orbit.

If an arc connects two finite-orbit ends, then it is omnipresent.

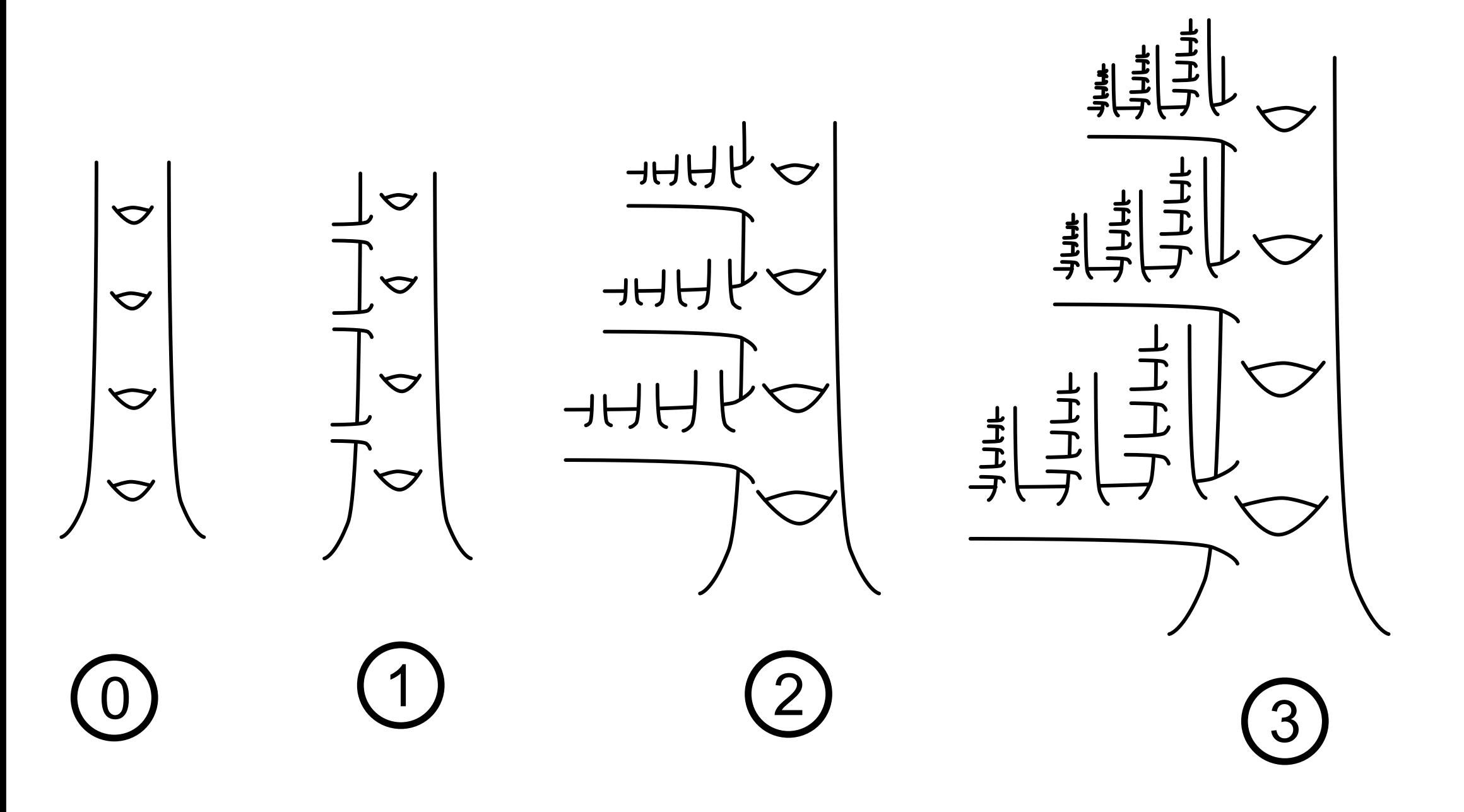


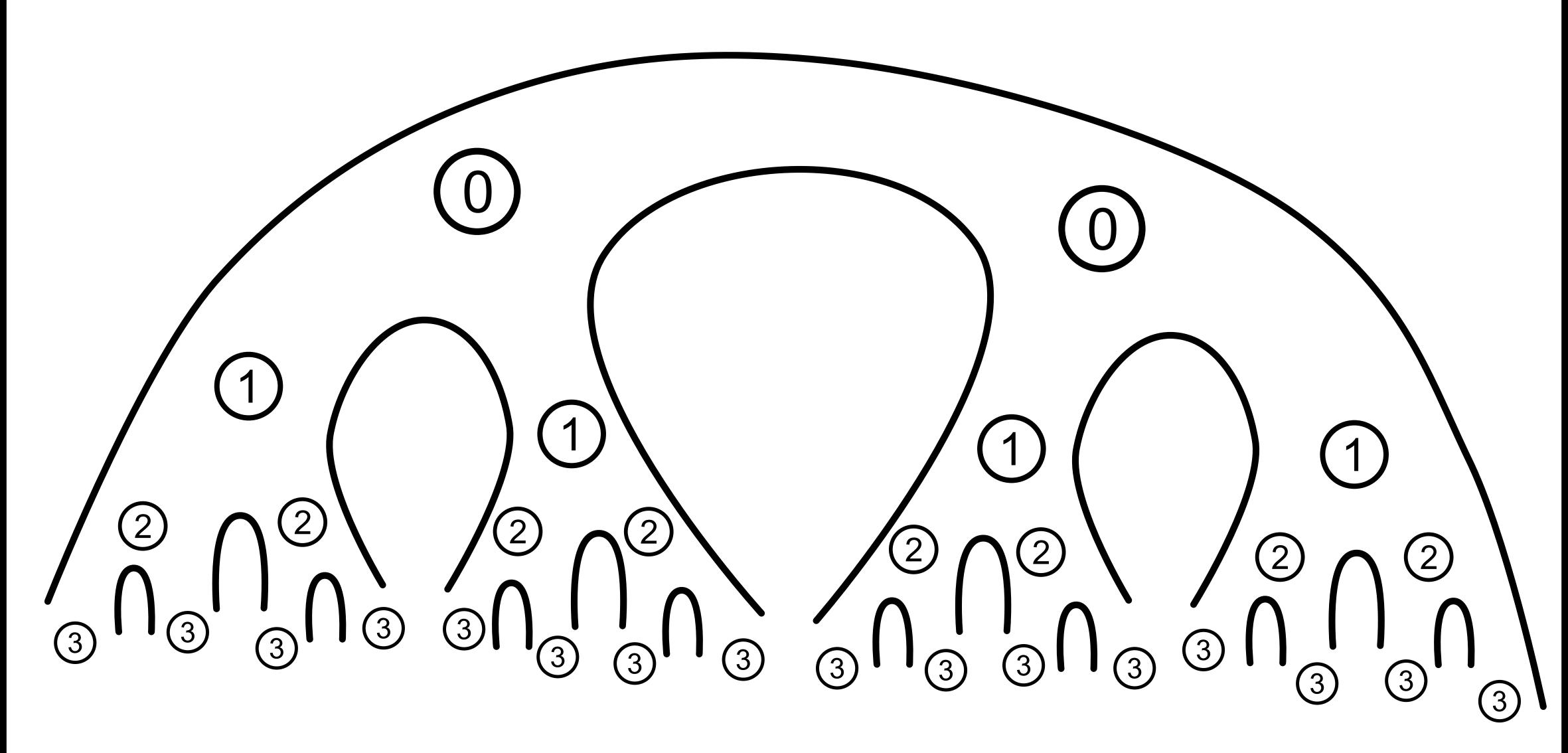
An end e is stable if $e = [U_1 \supset U_2 \supset \ldots],$ where $U_i \cong U_{i+1}$ for all $i \in \mathbb{N}$.

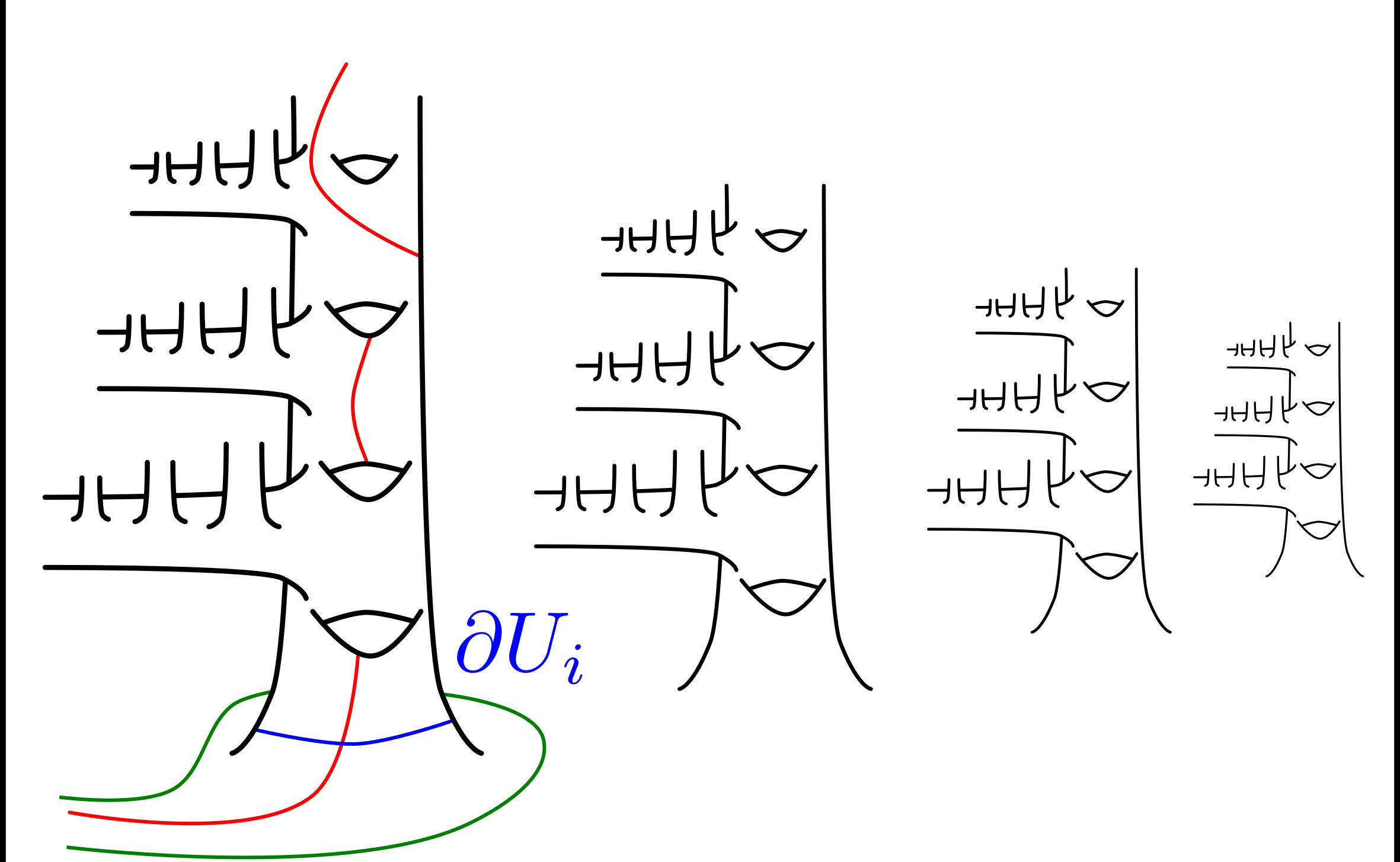
A surface is stable if every end is stable.

Theorem (Fanoni-Ghaswala-M)

For stable surfaces, an arc is omnipresent if and only if it connects two finite orbit ends.





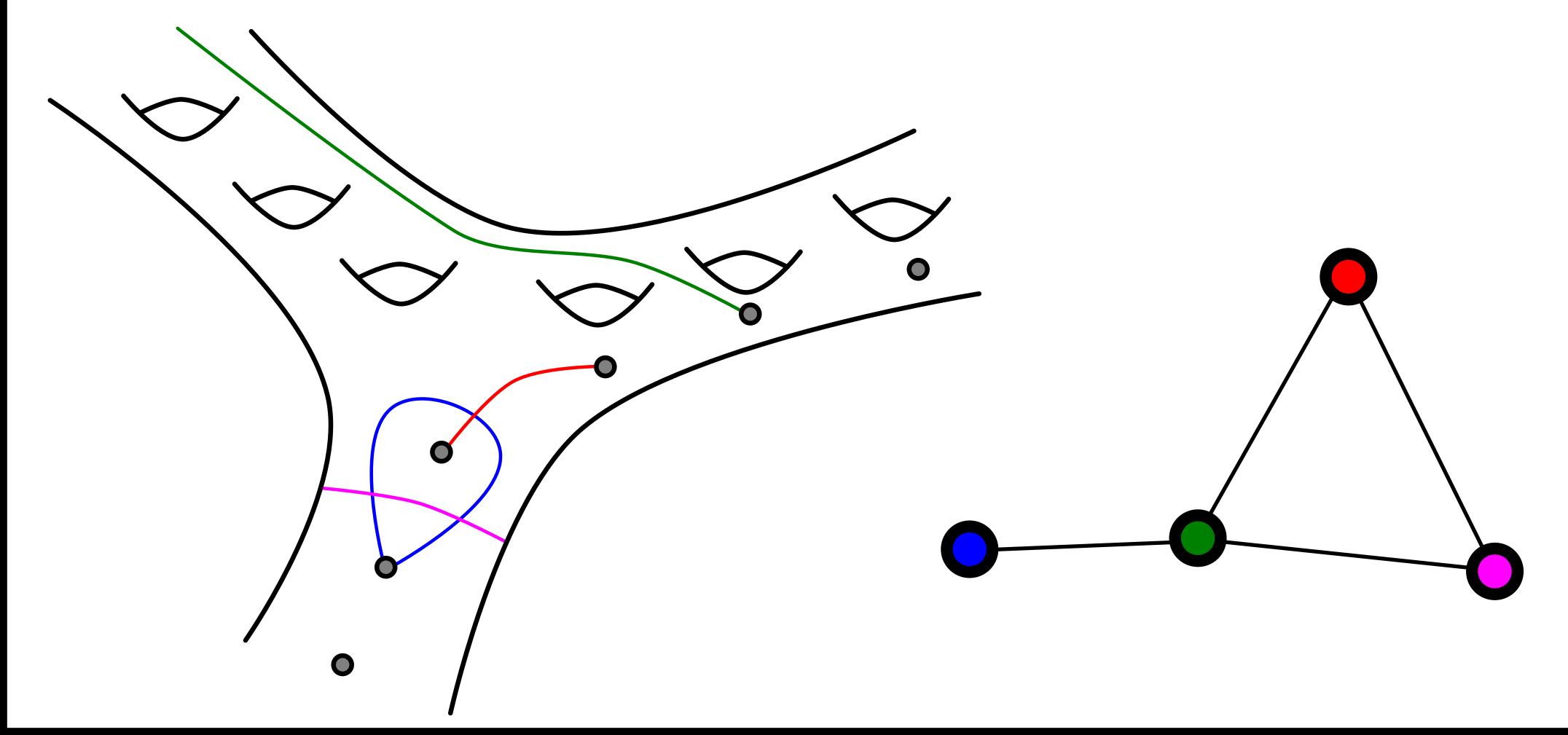


Graphs for infinite-type surfaces

The arc and curve graph $\mathcal{AC}(\Sigma)$

Vertices: isotopy classes of arcs and curves

Edges: pairs of disjoint arcs and curves



Bavard, Aramayona-Fossas-Parlier

Let P be the set of isolated planar ends.

 $\mathcal{A}(\Sigma, P)$ is the full subgraph whose vertices are arcs with endpoints in P.

If $|P| < \infty$ then $\mathcal{A}(\Sigma, P)$ is connected, infinite diameter, and δ -hyperbolic.

Rasmussen

Let g be the genus of Σ .

 $\mathcal{N}(\Sigma)$ is the full subgraph of nonseparating curves.

If $0 < g < \infty$ then $\mathcal{N}(\Sigma)$ is connected, infinite diameter, and δ -hyperbolic.

Durham-Fanoni-Vlamis

Let Σ have at least four finite orbit ends,

There exists a graph of curves; connected, infinite diameter, and δ -hyperbolic.

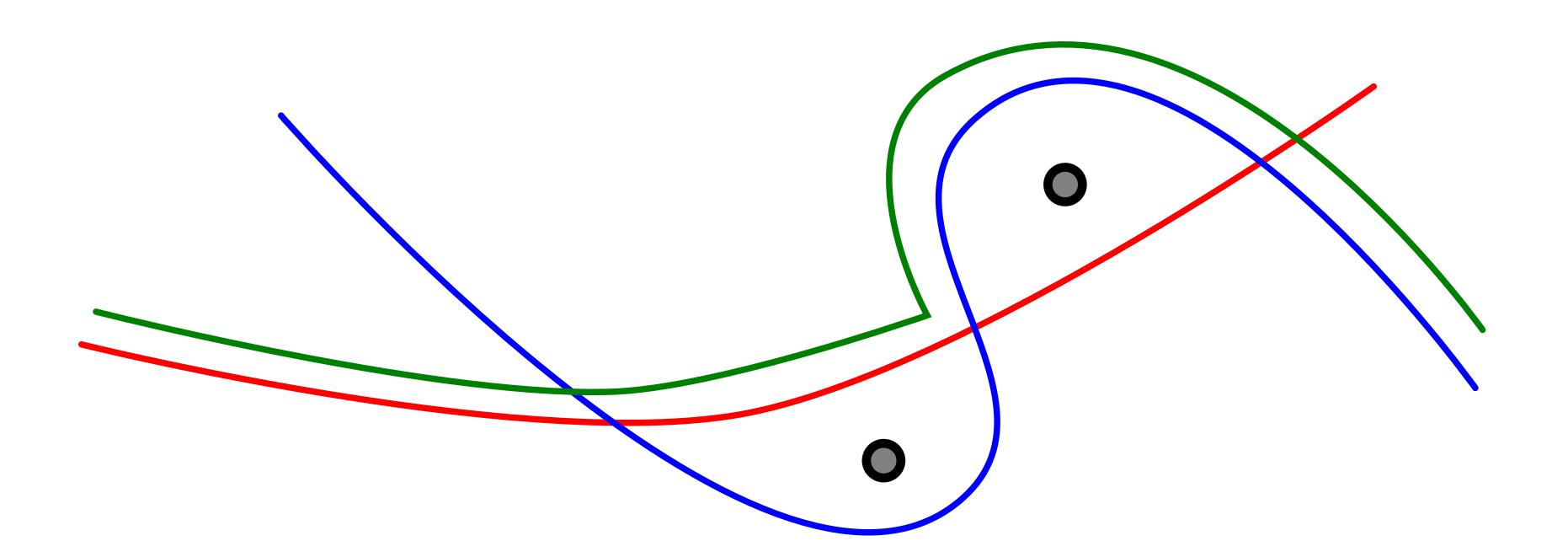
Theorem (Fanoni-Ghaswala-M)

If Σ is stable with at least three finite orbit ends, then the omnipresent arc graph $\Omega(\Sigma)$ is connected, δ -hyperbolic, and infinite diameter.

Infinitely intersecting unicorns

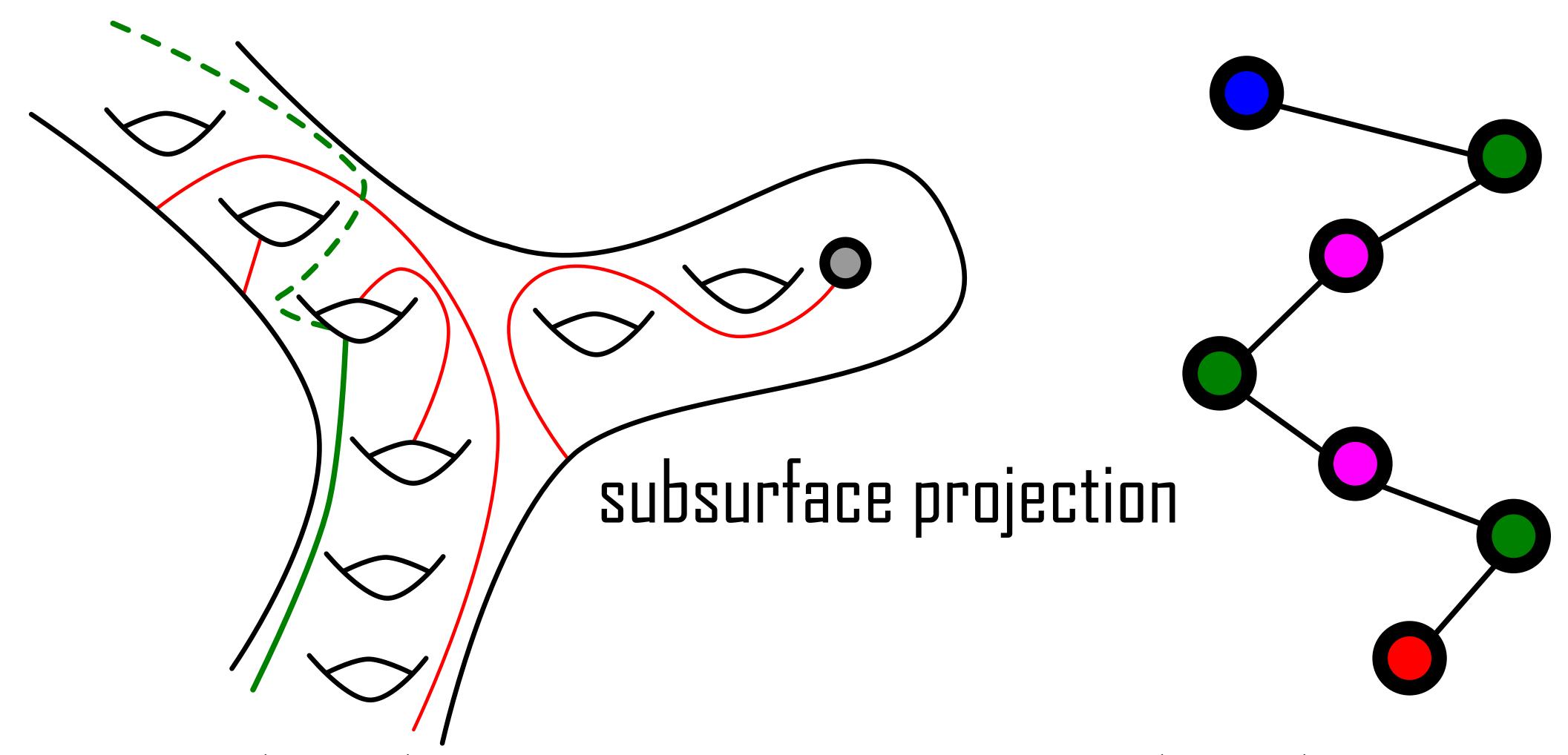
A unicorn of α , β is an arc given by $a \cup b$, where $a \subset \alpha$, $b \subset \beta$,

and $p = a \cap b$ is the unique corner.



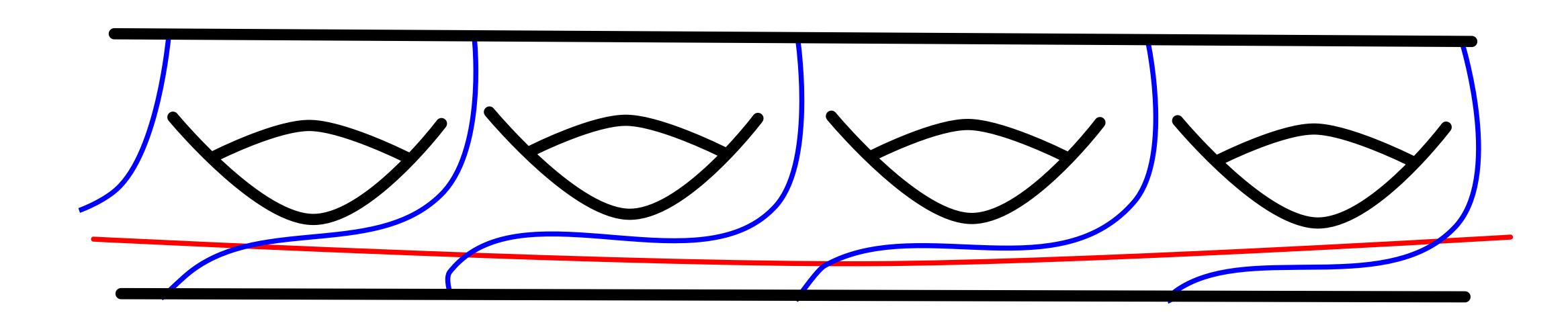
If α , β are 2-ended, a 2-ended unicorn always exists.

Let $A_0(\alpha, \beta)$ be the set of 2-ended unicorns. If $|\alpha \cap \beta| = \infty$ then $A_0(\alpha, \beta)$ is almost connected.



Let $A_1(\alpha, \beta)$ be the 1-nbhd of $A_0(\alpha, \beta)$. Then $A_1(\alpha, \beta)$ is connected.

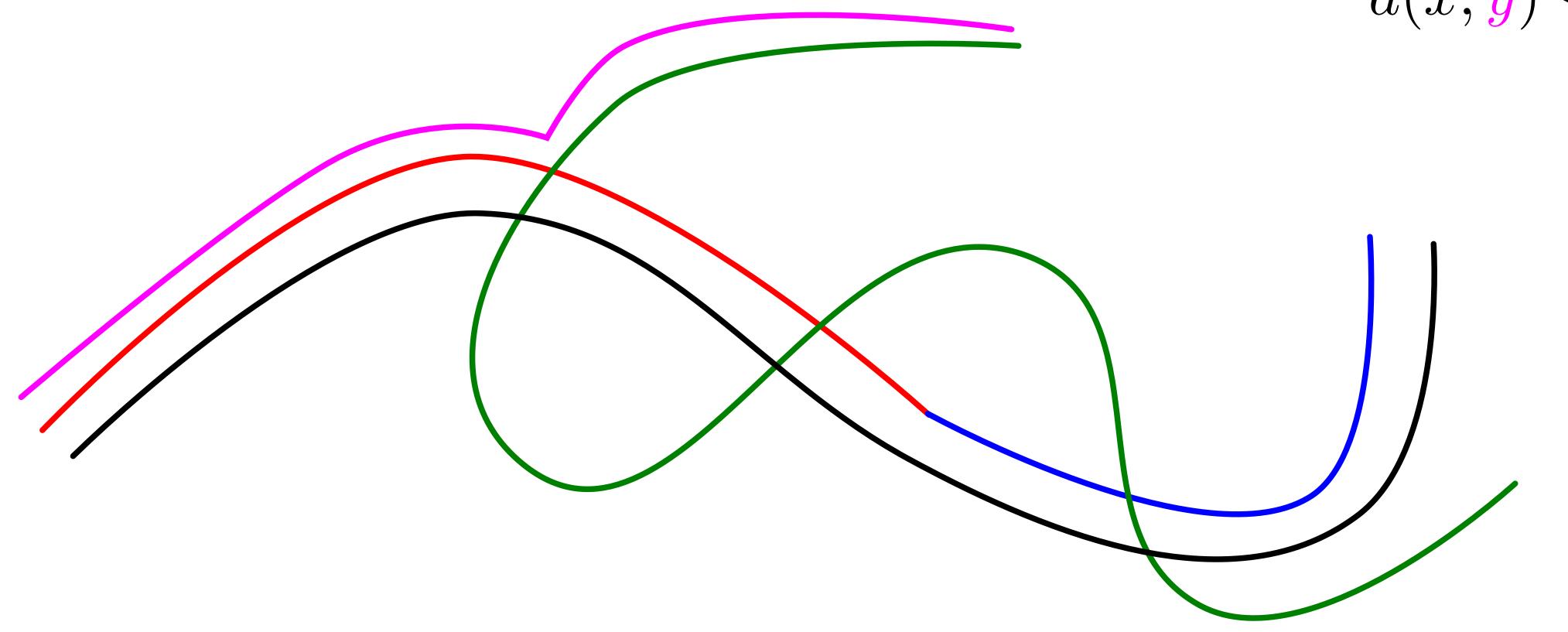
Is $\Omega(L_2)$ connected?



Guessing geodesics lemma

For all $x \in [\alpha, \beta]$ there exists $y \in [\alpha, \gamma] \cup [\gamma, \beta]$ such that $d(x, y) < \delta.$

For all $x \in A_1(\alpha, \beta)$ there exists $y \in A_1(\alpha, \gamma) \cup A_1(\gamma, \beta)$ such that d(x, y) < M.



$\mathcal{A}(\Sigma, P)$

