Counting conjugacy classes in groups

Wenyuan Yang (Peking University) joint with Ilya Gekhtman (University of Toronto)

June 10, 2020 Hyperbolic Lunch

Counting conjugacy classes in groups

Motivating examples: Cayley graph and word metric

Let G be a finitely generated group with a finite generating set S.

- The Cayley graph of G has the vertex set G so that two vertices g₁ ⇐⇒ g₂ are connected iff g₂ = g₁s for some s ∈ S
- The word metric is the combinatorial metric on the Cayley graph.

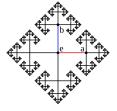


Figure: Standard Cayley graph of \mathbb{Z}^2

Figure: Standard Cayley graph of \mathbb{F}_2

Growth function and conjugacy growth

In this talk, we are interested in the following counting functions.

• The growth function

$$\mathsf{R} \mapsto \# \mathsf{N}(1, \mathbb{R})$$

counts the number of elements in a ball N(1, R) of radius R at 1.

• The conjugacy growth function

$$R \mapsto \mathcal{C}(1, R)$$

counts the number of conjugacy classes in the ball N(1, R).

Examples

() In \mathbb{Z}^n , the growth function equals the conjugacy growth function.

② [Coorneart; 2006] In \mathbb{F}^n , the conjugacy growth function is asymptotic to $C \frac{\exp(hR)}{R}$, where *h* = log(2*n*−1) and *C* = (2*n*−1)/2(*n*−1).

Classification of groups by growth function

- **Exponential growth**: growth function is of order *C* · exp(*C* · *R*) for some *C* > 1.
- **Polynomial growth**: Gromov (1983) famously proved that polynomial growth function characterizes the class of virtually nilpotent group.
- Immediate growth: Grigorchuk (1983) constructed the first examples of groups which is neither polynomial nor exponential.

Remark

Many naturally occuring groups satisfy the **Tits alternative**: either it is virtually solvable or contains \mathbb{F}_2 . As a consequence, the growth function is either polynomial or exponential.

< □ > < □ > < □ > < □ > < □ > < □ >

Varieties of conjugacy growth

In 2010, Cuba and Sapir initiated a systematic study of conjugacy growth function in groups. It turns out that conjugacy growth functions could be very different with growth functions:

- The solvable groups [Breuillard-Cornulier; 2010] and linear groups [Breuillard-Cornulier-Lubotzky-Meiri; 2013]: The conjugacy growth function is either polynomially bounded or exponential.
- ② [Hull-Osin; 2011] Conjugacy growth is not quasi-isometric invariant: ∃ finitely generated group with exponential conjugacy growth but with a finite index subgroup with exactly two conjugacy classes.
- [Hull-Osin; 2011] Any reasonable function (nondecreasing at most exponential) can be realized as conjugacy growth of a finitely generated group.

イロト イボト イヨト イヨト

Setup: counting conjugacy classes in group actions

Suppose a group G acts properly on a geodesic metric space (X, d).

 Fix a basepoint o ∈ X. Denote N(o, n) := {g ∈ G : d(o, go) ≤ n} < ∞. The function

$$\mathcal{G}: n \to \sharp N(o, n)$$

is called growth function.

2 Define the **algbraic length** of a conjugacy class [g]:

$$\ell_o([g]) = \min\{d(ho, o) : h \in [g]\}.$$

and consider the conjugacy growth function

$$\mathcal{C}(o,n) = \sharp\{[g] \in G : \ell_o([g]) \leq n\}.$$

Problem: coarse asymptotic conjugacy growth

The growth function is called **purely exponential** if there exists a constant δ_G called **growth rate** such that

 $\sharp N(o,n) \asymp \exp(n\delta_G)$

Here \asymp means that both sides are equal, up to a **multiplicative** constant.

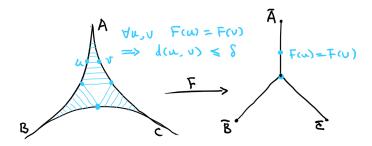
Question

Assume that the growth function is purely exponential, under which conditions, we have a coarse asymptotic conjugacy growth formula:

$$\mathcal{C}(o,n) \asymp \frac{\exp(n\delta_G)}{n}$$
 ?

Hyperbolic groups in the sense of Gromov

► A geodesic metric space X is called δ -hyperbolic for $\delta \ge 0$ if any geodesic triangle is δ -thinner than the comparison triangle in a tree.



► A finitely generated group is called **hyperbolic**, if it acts properly and cocompactly on a δ -hyperbolic space for some $\delta > 0$.

Conjugacy growth for hyperbolic groups

Theorem (Coornaert-Knieper, 1997, torsion-free case; Antolin-Ciobanu, 2015, general case)

Let G be a group acting properly and cocompactly on a hyperbolic space (X, d). Fix a basepoint o. Then

$$\mathcal{C}(o,n) \asymp \frac{\exp(\delta_G n)}{n}$$

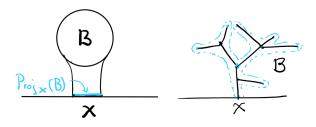
where

$$\delta_G = \lim_{n \to \infty} \frac{\log \# N(o, n)}{n}$$

Contracting subsets

Let (X, d) be a geodesic metric space.

 A subset S is called (strongly) contracting if any ball missing S has a uniform bounded projection to X: there exists C > 0 such that if a metric ball B ∩ S = Ø then Diam(Proj_S(B)) ≤ C.



• Geodesics in trees are contracting: we can take C = 0.

Image: A matrix

Contracting elements

Definition

An element $g \in G$ is called **contracting** if for some basepoint $o \in S$, the map $n \in \mathbb{Z} \to g^n \cdot o$ is a quasi-isometric embedding map:

$$\exists \lambda \geq 1, c > 0: \quad \frac{1}{\lambda} |n - m| - c \leq d(g^n o, g^m o) \leq \lambda |n - m| + c$$

and the orbit $\langle g \rangle \cdot o$ is a strongly contracting subset.

Example

The prototype of a contracting element is the following.

- **1** In δ -hyperbolic spaces, (quasi-)geodesics are contracting.
- **2** An isometry g is called **loxodromic** if $\langle g \rangle$ preserves a quasi-geodesic.
- O Thus, a loxodromic element is contracting.

More examples of contracting elements

- Rank-1 elements in CAT(0) spaces are contracting. [Fujiwara-Bestvina, 2008]
- Rank-1 elements on a cubical CAT(0) space which is not a product of unbounded cube subcomplexes are contracting with respect to the combinatorial metric.
- Every pseudo-Anosov element in Mapping class groups is contracting [Minsky, 1997].
- Every hyperbolic element in a relatively hyperbolic group is contracting with respect to the Cayley graph. [Gerasimov -Potaygailo; 2010]

イロト イヨト イヨト ・

Main results: asymptotic growth of conjugacy classes

Theorem (Gekhtman - Y.; 2018)

Suppose a non-elementary group G admits a properly discontinuous cocompact action on a geodesic metric space (X, d) with a contracting element. Then for a basepoint $o \in X$, we have

$$\mathcal{C}(o,n) \asymp \frac{\exp(\delta_G n)}{n}.$$

Remark

Our theorem holds for a more general class of **statistically convex-cocompact actions** which is purely exponential [Y.2017]:

 $\sharp N(o,n) \asymp \exp(\delta_G n).$

・ロト ・ 同ト ・ ヨト ・ ヨト

Main results

Applications to conjugacy growth series

Define the conjugacy growth series

$$\sum_{n\geq 1} \mathcal{C}(o,n) z^n$$

- [Ciobanu-Hermiller-Holt-Rees] Virtually cyclic groups have rational conjugacy growth series.
- Rivin conjectured that non-elementary hyperbolic groups always have transcendental conjugacy growth serries. This was confirmed by Antolin-Ciobanu. We extend it to the following setting.

Corollary (Gekhtman - Y.)

Let G be a relatively hyperbolic group acting on its Cayley graph. The conjugacy growth series is transcendental iff G is not virtually cyclic.

< □ > < □ > < □ > < □ > < □ > < □ >

The proof of main theorem is a study of **generic behaviours** of isometries when a contracting element is supplied.

Theorem (Y. 2017)

The set S of non-contracting elements in G is exponentially negligible:

 $\exists \epsilon > 0, \forall n : \sharp S \cap N(o, n) \le \exp(-\epsilon n) \sharp N(o, n) \le \exp((\delta_G - \epsilon)n).$

The goal of our theorem is to prove

$$\mathcal{C}(o,n) \asymp \frac{\exp(\delta_G n)}{n}$$

so the growth rate of C(o, n) is exactly δ_G . However, by Theorem, the growth rate of non-contracting elements is strictly less than δ_G .

Remark (Conclusion)

It suffices to consider the conjugacy classes of contracting elements in G.

■ ▶ ◀ ■ ▶ ■ クへへ June 10, 2020 15 / 23

< ロ > < 同 > < 回 > < 回 >

Lower bound: an orbit closing lemma

- We first prove an orbit closing lemma: for certain proportion of elements g ∈ T ⊂ N(o, n), we purturb it by a universal element f to produce a contracting element g ⋅ f.
- 2 Since G has purely exponential growth, this gives at least

 $\# T \cdot f \ge \theta_1 \exp(\delta_G n)$

contracting elements for some uniform $\theta_1 > 0$.

We then show that each conjugacy class [gf] in T · f contains at most θ₂n elements. This gives the lower bound.

イロト イポト イヨト イヨト 二日

The idea in free groups

The general idea (as in free groups) is to notice that every conjugacy class [g] produces *n* different elements as follows by cyclic permutations of a shortest representative $g = s_1 s_2 \cdots s_n$:

$$s_2s_3\cdots s_ns_1, \ \cdots, \ s_ns_1\cdots s_{n-1}.$$

However, if the action $G \curvearrowright X$ is not cocompact, we are not able to produce *n* different elements for each [g], when [o, go] stays outside $N_M(Go)$ for large proportion of time.

イロト イヨト イヨト ・

Strongly primitive conjugacy classes

A contracting element g is contained in a maximal elementary group E(g). It is a virtually cyclic group so E(g) contain an index ≤ 2 subgroup $E^+(g)$ such that we have the following exact sequence

$$1 \to K \to E^+(g) \stackrel{\pi}{\to} \mathbb{Z} \to 1$$

where K is finite.

- Every element h in $E^+(g)$ so that $\pi(h) = \pm 1 \in \mathbb{Z}$ is called **strongly** primitive.
- A strongly primitive contracting element g must be primitive: it can not be written as a non-trivial power of some element.

Denote by C'(o, n) the set of strongly primitive conjugacy classes in C(o, n).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Obtaining upper bound on C'(o, n)

Lemma (GY)

Fix $1 > \theta > 0$. There exists an exp. generic set of elements $g \in G$ such that the fraction of [o, go] contained in $N_M(Go)$ is bigger than θ .

- Let g be the minimal element so that ℓ_o[g] = d(o, go) = n. Following the geodesic [o, go], we can thus plot N := (1 − θ) · n orbital points in the M-nbhd of [o, go].
- 2 Write the product form for $g = s_1 s_2 \cdots s_N$. If g is strongly primitive, then we show that all cyclic permutations give different elements.
- Thus, each strongly primitive conjugacy classes [g] of length n contain at least (1 θ)n elements.

We obtain the upper bound on $\mathcal{C}'(o, n) < \frac{\# N(o, n)}{(1-\theta)n} < \frac{\exp(\delta_G n)}{n}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Upper bound for all conjugacy classes

So far, we have established the lower bound for all conjugacy classes, and the upper bound for strongly primitive conjugacy classes:

$$\frac{\exp(\delta_G n)}{n} < \mathcal{C}(o, n) < ??$$
$$?? < \mathcal{C}'(o, n) < \frac{\exp(\delta_G n)}{n}$$

It remains therefore to prove the lower bound for strongly primitive ones, and the upper bound for all conjugacy classes.

► The solution is to prove that the set of strongly primitive contracting elements are exponentially generic:

$$\frac{\mathcal{C}'(o,n)}{\mathcal{C}(o,n)} \stackrel{exp.fast}{\longrightarrow} 1$$

Non-Strongly Primitive elements are exp. negligible:

For each Non-Strongly Primitive element $g \in NSP$ so that $\pi(g) \neq \pm 1$, we define a map

 $\Pi:[g]\mapsto [g_0]$

where $g = g_0^k f$ for some $f \in K$ and $|\pi(g_0)| = 1$.

- Since τ[g] = k · τ[g₀] for |k| ≥ 2, we have that [g₀] lies in C(τ[g]/k) which is at most exp(n · δ_G/k) ≤ exp(ωn) for ω < δ_G. Hence the image Π(NSP) is indeed exp. negligible.
- ② Since $g = g_0^k f$ for $f \in K$, we need to make sure the map Π is uniformly finite to one: the kernel K is uniform bounded. However, this is generally not true (eg. Dunwoody's group [Abbott 2016])!

21 / 23

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Non-Strongly Primitive elements are exp. negligible:

Using the recent work of Bestvina-Bromberg-Fujiwara-Sisto, we can prove that this is true for a generic set of contracting elements. :

Lemma (GY)

There exists an exponentially generic set of elements $g \in G$ such that for the corresponding exact sequence $1 \to K \to E^+(g) \to \langle t \rangle \to 1$, there exists a uniform bound on $\sharp K$ independent of g.

Consequently, the map Π is uniformly finite to one, completing the proof that \mathcal{NSP} is exp. negligible, thus the primitive element is exp. generic.

$$\frac{\exp(\delta_G n)}{n} < \mathcal{C}'(o,n) < \mathcal{C}(o,n) < \frac{\exp(\delta_G n)}{n}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

э