Big mapping class groups acting on homology

Federica Fanoni

Joint with Sebastian Hensel and Nicholas Vlamis

$$S$$
 surface (conn, oriented, $S = d$)

Mapping class group: $MCG(S) := Homeo^+(S)/homotopy$

Not J.g. J.g. not discrete

Homology

 $\begin{aligned} & \operatorname{GL}(H_{n}(S;\mathbb{R})) \\ & \mathcal{W} \end{aligned}$ Action of $\operatorname{MCG}(S)$ on homology $\rightsquigarrow \rho_{S} : \operatorname{MCG}(S) \to \operatorname{Aut}(\operatorname{H}_{1}(S;\mathbb{Z}); \hat{\imath}) \\ & & \uparrow \end{aligned}$ Question: what is the image of ρ_{S} ? $\pm \cdot e \cdot \operatorname{shich} \varphi \in \operatorname{FL}(H_{n}) \\ & \operatorname{come} \operatorname{from a mapping} \\ & \operatorname{class} ? \end{aligned}$

A classical result

 $\beta_1 \longmapsto \beta_1$

 $F_{*} = \varphi$

 $\longrightarrow F: S \longrightarrow S$ homeo $d \rightarrow d' , \beta \beta \beta'$

The Loch Ness monster

Theorem (F.–Hensel–Vlamis)

If S is the Loch Ness monster, ρ_S is surjective onto $\operatorname{Aut}(\operatorname{H}_1(S;\mathbb{Z});\hat{\imath}) \simeq$ $\operatorname{Sp}(\mathbb{N};\mathbb{Z}).$

woblem:

 $(f_n)_{*} = \varphi|_{H_1(A_n, \mathbb{Z})} \Longrightarrow f_{*} = \varphi$

The general case

Ends

Fact: ends \leftarrow , ultrafiltors for $(f_i \leq)$ $e \leftarrow$, $f_e = 1 \lor ef[\exists X fease:$ $\lor = H_n(X;Z)$ $\& e \in Ends(X)$

Separating curves

 γ separating curve $\rightsquigarrow \mathcal{L}(\gamma) := \{ e \in \operatorname{Ends}(S) \mid e \text{ is to the left of } \gamma \}$

Lemma

 α, β separating. Then $[\alpha] = [\beta]$ if and only if $\mathcal{L}(\alpha) = \mathcal{L}(\beta)$.

 $C = [\gamma], \gamma \text{sep.} \Rightarrow \mathcal{L}(C) := \mathcal{L}(\gamma)$

The general case $f = \int f_{n}(X;Z) X f_{n}(X;Z) X$ peare

Theorem (F.–Hensel–Vlamis)

Let S be either:

- a finite-type surface with at least 4 punctures, or
- an infinite-type surface different from the Loch Ness monster or the once-punctured Loch Ness monster.

