Actions of Homeo and Diff groups on manifolds

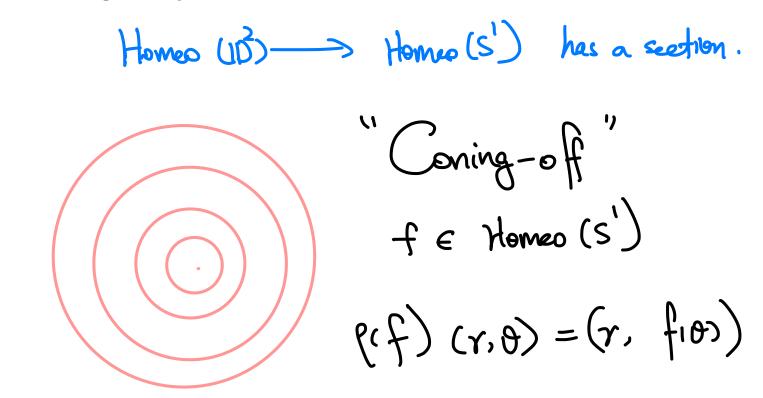
Lei Chen @Caltech

Joint with Kathryn Mann

Ghys in 1990s has studied "*extension problem*" and proved the following:

Diff(D) ~ Diff(S') has no sections. A section of M can be considered as extensions of elements in Diff(s') that preserves group sometance. His argument: O 7 a global fixed point If ∃ a section ⇒ (Smith theory) @ Take a derivative at 0 $Diff(s') \xrightarrow{D} GL_{1}R$ not hard to show D is trivial 3 Thurston Stability (Reeb St) trivial derivative => torsion free contradiction → "A flat S'-bundle" is not always the boundary of a flat D'- budle.

Topologically, the extension exists.



Naturally, we ask a guestion Is this "coning -of" the only extension?

Iasked Rotre about it and she gave me a paper of Militon Militon's example "Militon's action" $---> Homeo(A^2)$ $A^2 = S' \times To, I]$ Homeo (s') 4 F P(f) (0, 2) $= \left(f_{i\theta} \right), \quad f_{i\theta+r} - f_{i\theta} \right)$ J, J are lifts to universal cover IR ~> s' Now the t-coordinate also change !

Militon's Theorem

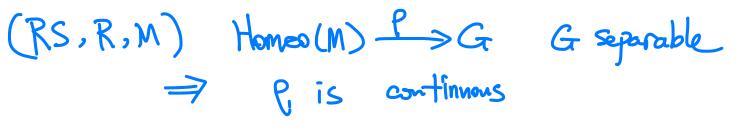
 $\sim A^2$ aetrons of Homeo (S') fully classified K ∈ [0,1] closed subset Homeo (s') V S'XK as coning. Complement of S'XK S S'X To»] by Militon action This construction apparantly doesn't extend to higher dimension. Bigger goal Can we classify all Homeo(M), Diff(M) action N? for M, N two manifolds. In this talk, Homeo (M), Diff (M) denote id component. We will not talk about mapping class group.

Basic Properties of Homeo(M) and Diff(M)

- 1. Locally generated and locally contractible
- Diff -> Bunach monifold structure Homes -> Kirby - Eduard's result 2. Fragmentation property (Kirby—Edward) Yg ∈ G Y cover Ellag of M ⇒ g = TI gi sit supp(gi) ≤Na somed Diff -> partition of unity Homes -> Kirby - Eduard 3. Simplicity (Thurston, Epstein, Herman, Yoccoz, Mather) V ≠ dim (M)+1 ⇒ Diff (M) is simple

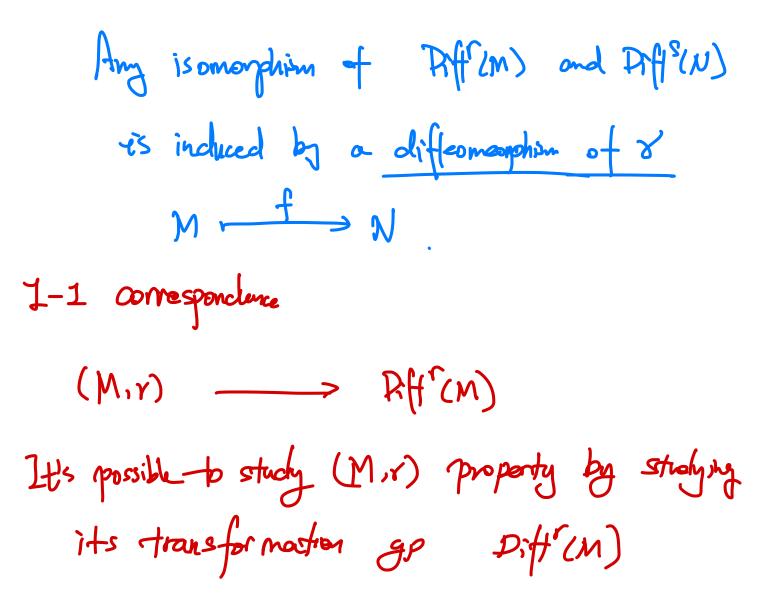
r is nequearity.

4. Automatic continuity (Rosendal-Solecki, Rosendal, Mann, Hurtado)



(H) Piff* (M) - P Diff* (N) always artinuous

5. Uniqueness (Whittaker, Filipkewicz)



Example Zoo Diff (M) ~ N Homeo(M) 1) Coning-off Homeo (Sn) ~ Dn+) 2 Suspension Homeols") V Sn+1 3 double susponsion Homeo(H) 2 SHZ Cannon's thm: 52HM for H" homology sphere $is = S^{n+2}$ • M, M×M, M×M×K M×M×K/~ $(x_1x,t) \sim (x,x,t')$

Diff(M) M, TM, PM FM, GK(M) Jej (M) Observation: dim N 🗦 dim M (couj of Ghys) Hurtado 2015 Differs -> Differs p non trivial ⇒ dim N ≥ dim M Orbit Classification Theorem (C-Mann)

X finite din CW complex and M closed manifile
Any continuous aution of Homeo(M) V X.
every orbit is homeonimphic to a cover of Confuctor
Confu(M) unortented configuration space
{{xi>- xn}} xi +x;, xi \in M]
$$\leq$$
 Sym (M)
For Diff (M), every orbit is Jetn (M) /A
A \leq Jet a lie subgroup.
Tou may nonder which core can appear as orbits:
Eq: Homeo(S) has no address on R
but Homeo(S2) acts on Sz universal cover.
g32
This question is closely related to III (HomedM)

Applications

1. Ghys' dimension growth conjecture

Outline the proof of Orbit Classification Theorem

G = Homeo(M) Def: A = G a closed subgp we say ASG has finite codim if G/A can be embedded in finite dru CW complex. Stab(n) = G satifies that $G/Stab(n) \cong O(n) \subseteq N$ ⇒ Stab(n) is a fmite ædim subgp.

Mm (C.-Mann) OCT2 If A EG is finite adm =) Z XIJ--MEM St Stab(x1,...xn) = À E Stab(x1,...xn) Identity component in general Stab(x1>-xn) is not connected. Now OCT2 >>> OCTI $G/Stab(x_1, -x_n) \cong Confn(M)$

G/Stab(X1.-Xn) cover

G/A is an intermediate cover.

 $\Im A^2 = S' \times [o_1]$ Homeo (s')

$$PGonf_2(S') = S' \times (0,1)$$

How to prove OCT2
$$G = Homes CM$$
.
 $Pf: \square B \in M$ a ball
 $GB = \hat{\Sigma} f \in G$ $| supp (f) \in B$
 $Cain: Lf A \in G$ finite code $M \Rightarrow A \geq GB$ some B.
 $Pf: Lf not$ B_i B_i B_i B_i $-$
 $A \neq GB_i \Rightarrow \frac{GB_i}{A \cap GB_i} \subseteq G/A$
 $Contributes a copy of R in G/A.$
some argument with simplicity of GB_i
 $\Rightarrow GB_i \times \dots \times GB_n$ has a copy of $|R^n|$
 \Rightarrow blow up the dim of G/A .

Donsider the action of A J M $\forall x \in \mathcal{M}$ Orbit(A) = AxClaim: Ax is either finite or <u>confinite</u> $\forall x \in M$ (finite complement) Pf: If not, I the momite orbits O(x) = Ax a_t^1 a_t^2 a_1^3 \cdots ++-Org) = Ay. IR⁰⁰ -> G/A is almost injective blowup dim. => ③ ①+② ⇒ = finite set S⊆M sit floma (M-S) SA (fragmentation) A > GB B C M-S (Bi) cover M-S Stab(S) = Home (M-S) Stab(S)

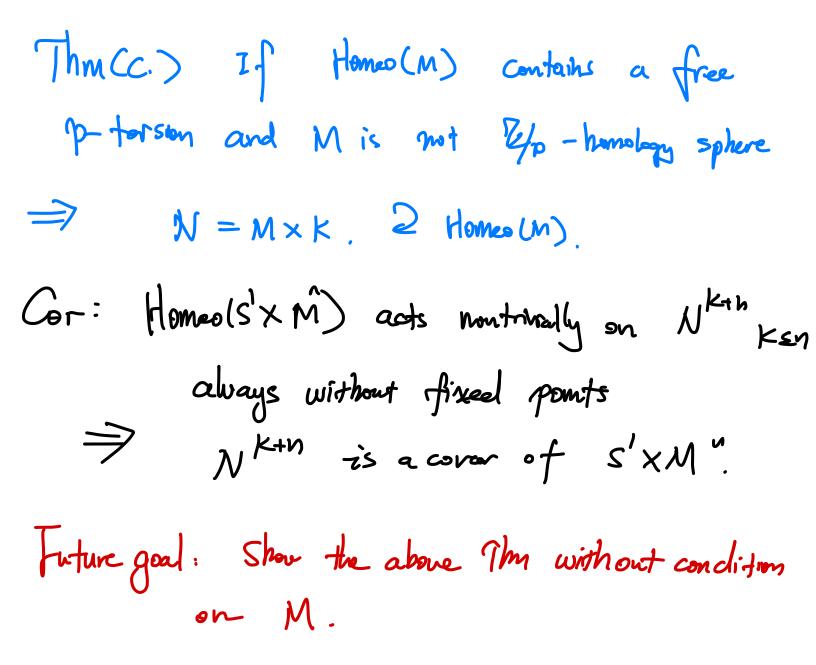
In low dimensional case Hunce (5") 2 5ⁿⁿ = 2³ sⁿ
dim N < 2 dim M [: Homoo(h) 2 N
Every orbit is either a point or a cover of M.
N - Fix (p)⁶ point.
$$m \in N - Fix(p)$$

Jr (Apply OCT2 to Stable)
M $m = ri(n)$ sit Stable) = Stable)
M $m = ri(n)$ sit Stable) = Stable)
Thum (C. - Mann) ris a flat bunchle.
Flat bunchle Thim can be used to prove extension problem
O = global flored point by flat bunchle Thim
@ the derivative is trivial
Thurston type argument.

What's next?

O How orbits can be glued together? · generalisation of flat bundle Thry 2 Shape of global Fixed Pomts. K<n Thm(C) If Homeo(s") I N"+K $N = S' \times K_{1} / \sim$ \rightarrow Ki is a Z-homology manifold with banday Ko $(m, x) \sim (n, y) \quad \forall x = y \in K_{\circ}$ $S^{n} \times I_{0,1}] / \sim = S^{n+1}$ Ex: $\left(\begin{array}{c} \varepsilon\\ \end{array}\right)$ S'x K1/2 is always a manifold.

Obstructing global fixed points in a special case



HANKS For listening!