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I. Hyperbolic geometry

A hyperbolic surface is a 2-dimensional Riemannian manifold with
constant negative curvature.

Geodesics on hyperbolic surfaces:
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Basmajian’s identity

If S is a compact hyperbolic surface with geodesic boundary, an
orthogeodesic γ on S is a properly immersed geodesic arc
perpendicular to the boundary at both ends.

Theorem (Basmajian, 1991)

length(∂S) =
∑
γ

2 log coth

(
length(γ)

2

)
where the sum is taken over all orthogeodesics γ in S .
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II. Teichmüller spaces

Let S be a compact surface with negative Euler characteristic. The
Teichmüller space of S

Teich(S) = {hyperbolic structures on S}/homotopy

= {discrete faithful ρ : π1S → PSL(2,R)}/PSL(2,R)
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Complexifying Basmajian’s identity

Thinking of the hyperbolic structure on S as a discrete faithful
representation ρ : π1S → PSL(2,R), our goal is to complexify the
identity as we deform the representation into a Schottky
representation ρ : π1S → PSL(2,C).

We need to address the convergence issue of the right hand side
series.
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Complexified Basmajian’s identity: convergence theorem

Theorem (H., 2018)

Given a marked Schottky representation ρ : Fn → PSL(2,C), the
series converges absolutely if and only if the Hausdorff dimension
of the limit set ΛΓ of the Schottky group Γ = ρ(Fn) is strictly less
than one.

Proof: conformal dynamics.
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Complexified Basmajian’s identity

Denote by S<1 the space of Schottky groups whose limit set has
Haudorff dimension less than one.

Theorem (H., 2018)

Suppose ρ0 : Fn → PSL(2,C) is a Fuchsian marking corresponding
to a hyperbolic surface S with geodesic boundary ∂S . Let α ∈ π1S
represent the free homotopy class of ∂S . If ρ is in the same path
component as ρ0 in S<1, then

l(ρ(α)) =
∑
w∈L

log[∞, 0; ρ(w) · ∞, ρ(w) · 0] mod 2πi (1)

Moreover, the series converges absolutely.



III. Higher Teichmüller theory

• Hyperbolic structures on surfaces: ρ : π1S → PSL(2,R)

• Anosov representations (Labourie, Guichard-Wienhard):
ρ : π1S → G , where G is a Lie group of higher rank.

• Let K = R or C. Following Pozzetti-Sambarino-Wienhard, we
study (1, 1, 2)-hyperconvex Anosov representations
ρ : π1S → PGL(n,K ) and establish identities for such
representations.
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Identities for real (1, 1, 2)-hc Anosov representations

Theorem (H., 2019)

Let S be a connected compact oriented hyperbolic surface with
geodesic boundary ∂S whose double Ŝ has genus at least 2. Let
α ∈ π1S represent the free homotopy classes of ∂S . If
ρ : π1S → PGL(n,R) is the restriction to π1S of a
(1, 1, 2)-hyperconvex representation ρ̂ : π1Ŝ → PGL(n,R), then

`ρ(ρ(α)) =
∑
w∈L

logCρ(α+
j , α

−
j ;w · α+

j ,w · α
−
j ) (2)

where `ρ is a notion of length with respect to ρ, Cρ is a cross ratio
defined for four points on the boundary at infinity ∂π1S and
α+
j , α

−
j are the attracting and repelling fixed points of αj ,

respectively. Furthermore, if ρ is Hitchin, it is Vlamis-Yarmola’s
identity.



Identities for complex (1, 1, 2)-hc Anosov representations
Let S<1 be the space of (1, 1, 2)-hyperconvex Anosov
representations ρ : π1S → PGL(n,C) whose limit set
ζ1(∂π1S) ⊂ P(Cn) has Hausdorff dimension strictly smaller than
one.
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IV. Identities in the context of rational maps

Consider f : C→ C given by fc(z) = z2 + c where c ∈ C.

Iterates fc ◦ fc ◦ fc · · ·

Filled-in Julia set Kc = {z ∈ C | f nc (z) 6→ ∞}.

Julia set Jc = ∂Kc .

Example: f (z) = z2. K0 is the closed unit disk and J0 = S1.
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Julia sets: Douady rabbit and Basilica
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Cantor Julia sets



Quadratic polynomials: parameter space

Mandelbrot set M = {c ∈ C | f nc (0) 6→ ∞}.



Basmajian-type identities for z2 + c

Denote by (C \M)<1 the set of c ∈ C \M such that dimHJc < 1.

Theorem (H., 2018)

For complex parameter c ∈ (C \M)<1, let T1 and T2 be the two
branches of f −1

c and z1 be the fixed point of T1, then the following
identity holds

z1 − (−z1) =
∑

w∈{T1,T2}∗
(−1)η

(
w(T1(−z1))− w(T2(−z1))

)
where η is the number of T2’s in the word w .



V. Geometry and topology of parameter spaces

Mandelbrot set M = {c ∈ C | f nc (0) 6→ ∞}.

• Topology of the complement of the Mandelbrot set.
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V. Geometry and topology of parameter spaces

Mandelbrot set M = {c ∈ C | f nc (0) 6→ ∞}.

• Topology of the complement of the Mandelbrot set.
• Geometry of a hyperbolic component of M.



Topology of the shift locus

We consider the space Xd of monic and centered complex
polynomials of degree d ≥ 2, i.e. the space of polynomials of the
form

f (z) = zd + ad−2z
d−2 + · · ·+ a1z + a0

Hence, Xd is naturally homeomorphic to Cd−1.

The shift locus Sd is the subset of polynomials for which every
critical point goes to infinity under iterations of the polynomial.

Example: 0 is the only critical point of fc(z) = z2 + c.
Recall: Mandelbrot set M = {c ∈ C | f nc (0) 6→ ∞}. Therefore S2

is the complement of the Mandelbrot set.
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Topology of the shift locus (Cont’d)

S2 is the complement of the Mandelbrot set. It is topologically a
circle.

For d ≥ 3, Sd is very complicated!

Theorem (Bavard-Calegari-H.-Koch-Walker, 2019)

For d ≥ 2, we develop a combinatorial model for the shift locus
Sd . Using this model, we compute the fundamental group of S3

and study the monodromy map π1Sd → MCG(R2 − Cantor set).
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Geometry of hyperbolic components of rational maps

For each d ≥ 2, let Ratd be the space of degree d rational maps.
Denote ratd := Ratd/Aut(P1) the moduli space of degree d
rational maps.

Theorem (H.-Nie, 2020)

Let H be a hyperbolic component in ratd such that
dimH(H) ⊂ (1, 2). Then we construct a Riemannian metric on H
which is conformal equivalent to the standard pressure metric.
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VI. Number theory: relations to L-functions

Dirichlet’s unit theorem expresses certain covolumes (of units in an
algebraic number field) in terms of special values of L-functions,
which have a series decomposition, of which the Riemann zeta
function is the simplest example.

Basmajian’s identity expresses in a similar way a (co)volume as a
series over topological terms.
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The Riemann zeta function

Recall the Riemann zeta function ζ(s)

ζ(s) =
∞∑
n=1

1

ns

As a complex function of s,

1. ζ(s) is analytic in the half-plane Re(s) > 1.

2. ζ(s) has an analytic continuation to the whole s-plane except
for a simple pole at s = 1 with residue 1.

3. ζ(s) has no zeros in the half-plane Re(s) > 1. Zeros of ζ(s)
are mysterious.



The Prime Number Theorem

Let π(n) = #{primes ≤ n}.

Theorem (Hadamard, de la Vallée-Poussin, 1899)

π(n) = Li(n) + O(ne−a
√

log n) as n→∞

for some positive constant a.

Li(x) =
∫ x

2
dt

log t .
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The Prime Ideal Theorem

Theorem (Hecke’s Prime Ideal Theorem, 1918)

1. The number of prime ideals in Gaussian integers Z[i ] with
norm less than n grows like Li(n);

2. The angular components of Gaussian primes are
equidistributed over the circle.



L-functions from the identities

For Schottky groups: Recall RHS =
∑

w∈L log cw

F (s,m) =
∑
w∈L

χ

(
log cw
| log cw |

)
| log cw |s

where χ : S1 → S1 is a unitary character given by χ(z) = zm for
some m ∈ Z and s ∈ C. Moreover, F (1, 1) gives the RHS series in
the identity.

For quadratic polynomials:

G (s,m) =
∑

w∈{T1,T2}∗

(
w(I )

|w(I )|

)m

|w(I )|s

where s ∈ C, m ∈ Z. Note that F (s) and G (s) converge absolutely
at least when Re(s) is large.
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Analytic properties of F (s,m) (resp. G (s,m))

Theorem (H., 2018)

For any m ∈ Z, F (s,m) (resp. G (s,m)) converges absolutely if
and only if Re(s) > δ, where δ is the Hausdorff dimension of the
limit set (resp. Julia set).

Theorem (H., 2018)

1. If m = 0, F (s,m) (resp. G (s,m)) is analytic on the half-plane
Re(s) > δ − ε for some ε > 0 except a simple pole at s = δ.

2. If m 6= 0, F (s,m) (resp. G (s,m)) is analytic on the half-plane
Re(s) > δ − ε for some ε > 0.
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Counting complex orthospectrum

Theorem (H. 2018)

There exist constants C1 > 0 and d1 ∈ (0, δ) such that

#{w ∈ L | <(d(`,w · `)) < x} = C1e
δx + O(ed1x) as x →∞.

where ` is the axis of the boundary element.

This result also appeared in Parkkonen-Paulin, Pollicott.

Equidistribution of holonomy:

Theorem (H. 2018)

For m 6= 0 and any non-Fuchsian Schottky group, there exist
C > 0 and 0 < d1 < δ such that for any f ∈ C 2(S1), we have

∑
| log cw |−1≤x

f

(
log cw
| log cw |

)
= Cxδ

∫ 1

0
f (e2πit)dt + O(xd1)

where the implied constant depends on the C 2-norm of f .
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#{w ∈ L | <(d(`,w · `)) < x} = C1e
δx + O(ed1x) as x →∞.

where ` is the axis of the boundary element.

This result also appeared in Parkkonen-Paulin, Pollicott.
Equidistribution of holonomy:

Theorem (H. 2018)

For m 6= 0 and any non-Fuchsian Schottky group, there exist
C > 0 and 0 < d1 < δ such that for any f ∈ C 2(S1), we have

∑
| log cw |−1≤x

f

(
log cw
| log cw |

)
= Cxδ

∫ 1

0
f (e2πit)dt + O(xd1)

where the implied constant depends on the C 2-norm of f .



Orbit counting for quadratic polynomials
Parallel counting results for quadratic polynomials:

Theorem (H., 2018)

There exist constants C2 > 0 and d2 ∈ (0, δ) such that

#{w ∈ {T1,T2}∗ | |w(I )| > 1/x} = C2x
δ + O(xd2) as x →∞.

Equidistribution of holonomy:

Theorem (H. 2018)

For m 6= 0, there exist C > 0 and 0 < d2 < δ such that for any
f ∈ C 2(S1), we have

∑
|w(I )|−1≤x

f

(
w(I )

|w(I )|

)
= Cxδ

∫ 1

0
f (e2πit)dt + O(xd2)

where the implied constant depends on the C 2-norm of f .



Orbit counting for quadratic polynomials
Parallel counting results for quadratic polynomials:

Theorem (H., 2018)

There exist constants C2 > 0 and d2 ∈ (0, δ) such that

#{w ∈ {T1,T2}∗ | |w(I )| > 1/x} = C2x
δ + O(xd2) as x →∞.

Equidistribution of holonomy:

Theorem (H. 2018)

For m 6= 0, there exist C > 0 and 0 < d2 < δ such that for any
f ∈ C 2(S1), we have

∑
|w(I )|−1≤x

f

(
w(I )

|w(I )|

)
= Cxδ

∫ 1

0
f (e2πit)dt + O(xd2)

where the implied constant depends on the C 2-norm of f .



Thank you!
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