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Geodesics on hyperbolic surfaces:
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Basmajian's identity

If S is a compact hyperbolic surface with geodesic boundary, an
~v on S is a properly immersed geodesic arc
perpendicular to the boundary at both ends.

Theorem (Basmajian, 1991)

length(0S) = Z 2 log coth (W)
g

where the sum is taken over all orthogeodesics 7y in S.
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Complexifying Basmajian's identity

Thinking of the hyperbolic structure on S as a discrete faithful
representation p : m1S — PSL(2,R), our goal is to the
identity as we deform the representation into a

p:mS — PSL(2,C).

We need to address the convergence issue of the right hand side
series.
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Complexified Basmajian's identity

Denote by S.1 the space of Schottky groups whose limit set has
Haudorff dimension less than one.

Theorem (H., 2018)

Suppose po : F, — PSL(2,C) is a Fuchsian marking corresponding
to a hyperbolic surface S with geodesic boundary 0S. Let o € ™1 S
represent the free homotopy class of 0S. If p is in the same path
component as pg in S<1, then

I(p(e)) = Z log[oo, 0; p(w) - 00, p(w) - 0] mod 27mi (1)
weLl

Moreover, the series converges absolutely.
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e Hyperbolic structures on surfaces: p: 1S — PSL(2,R)

o (Labourie, Guichard-Wienhard):
p:mS — G, where G is a Lie group of

e Let K =R or C. Following Pozzetti-Sambarino-Wienhard, we
study Anosov representations

p:mS — PGL(n, K) and establish identities for such
representations.



|dentities for real (1,1,2)-hc Anosov representations

Theorem (H., 2019)

Let S be a connected compact oriented hyperbolic surface with
geodesic boundary 0S whose double S has genus at least 2. Let
o € m1S represent the free homotopy classes of 0S. If

is the restriction to m1 S of a
(1,1,2)-hyperconvex representation p : ms — PGL(n,R), then

p(Oé)—ZlOgC Ja ¥ J—'i_aw'aj_) (2)

weL

where {,, is a notion of length with respect to p, C, is a cross ratio

defined for four points on the boundary at infinity 0m S and
ozjr, o; are the attracting and repelling fixed points of «;,
respectively. Furthermore, if p is Hitchin, it is Vlamis-Yarmola's

identity.
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|dentities for complex (1, 1,2)-hc Anosov representations
Let S<1 be the space of (1, 1,2)-hyperconvex Anosov
representations p : m S — PGL(n, C) whose limit set
¢1(0m1S) € P(C") has Hausdorff dimension strictly smaller than
one.

Theorem (H., 2019)

Let S be a connected compact oriented hyperbolic surface with
geodesic boundary 0S whose double has genus at least 2. Let

o € 1S represent the free homotopy classes of 0S. If

po : mS — PGL(n,R) is (1,1,2)-hyperconvex and p is in the same
path component as pg in S<1, then

ly(p(a)) = Z log Cp(aj-r, oW af, w-a; ) mod 2mi,
wel

where onTL, o are the attracting and repelling fixed points of «;,

respectively. Moreover, the series converges absolutely.

Proof: projective dynamics.
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V. ldentities in the context of rational maps

Consider f : C — C given by f.(z) = z? + ¢ where c € C.
Iterates foofrof----
Ke={z€C| £(2) 4 oo}
Jo = 0Ke.

Example: f(z) = z2. Ky is the closed unit disk and Jo = S*.
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Cantor Julia sets




Quadratic polynomials: parameter space

Mandelbrot set M = {c € C | f(0) 4 oo}.




Basmajian-type identities for z> + ¢

Denote by (C \ M)_; the set of c € C\ M such that dimyJ. < 1.
Theorem (H., 2018)

For complex parameter ¢ € (C\ M)_4, let Ty and T, be the two
branches of f-1 and z; be the fixed point of Ty, then the following
identity holds

a-(-a)= Y (U(wT(-2)) - w(Ta(-z))

WE{T;[,TQ}*

where 1 is the number of T,'s in the word w.
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V. Geometry and topology of parameter spaces

Mandelbrot set M = {c € C | f7(0) /4 oo}.

e Topology of the complement of the Mandelbrot set.
e Geometry of a hyperbolic component of M.
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Topology of the shift locus

We consider the space Xy of monic and centered complex
polynomials of degree d > 2, i.e. the space of polynomials of the
form

f(z) = 294 a4 0292+t a1z 4 ag

Hence, Xy is naturally homeomorphic to C91.

The S4 is the subset of polynomials for which every
critical point goes to infinity under iterations of the polynomial.

Example: 0 is the only critical point of f.(z) = z° + c.
Recall: Mandelbrot set M = {c € C | f(0) /4 oo}. Therefore S,
is the complement of the Mandelbrot set.
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Topology of the shift locus (Cont'd)

Sy is the complement of the Mandelbrot set. It is topologically a
circle.

For d > 3, Sy is very complicated!

Theorem (Bavard-Calegari-H.-Koch-Walker, 2019)

For d > 2, we develop a combinatorial model for the shift locus
Sq. Using this model, we compute the fundamental group of S3
and study the monodromy map w1 Sy — MCG(R? — Cantor set).
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Geometry of hyperbolic components of rational maps

For each d > 2, let Raty be the space of degree d rational maps.
Denote raty := Raty/Aut(P') the moduli space of degree d
rational maps.

Theorem (H.-Nie, 2020)

Let H be a hyperbolic component in raty such that
dimy(H) C (1,2). Then we construct a Riemannian metric on ‘H
which is conformal equivalent to the standard pressure metric.
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VI. Number theory: relations to L-functions

Dirichlet's unit theorem expresses certain covolumes (of units in an
algebraic number field) in terms of special values of L-functions,
which have a series decomposition, of which the Riemann zeta
function is the simplest example.

Basmajian’s identity expresses in a similar way a (co)volume as a
series over topological terms.



The Riemann zeta function

(s)
SIS

n=1

Recall the

As a complex function of s,
1. ((s) is analytic in the half-plane Re(s) > 1.
2. ((s) has an analytic continuation to the whole s-plane except
for a simple pole at s = 1 with residue 1.
3. ((s) has no zeros in the half-plane Re(s) > 1. Zeros of ((s)

are mysterious.
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The Prime Number Theorem

Let w(n) = #{primes < n}.
Theorem (Hadamard, de la Vallée-Poussin, 1899)

m(n) = Li(n) + O(ne‘avbg”) asn— oo

for some positive constant a.

LI(X) = f2x Iodgtt'




The Prime Ideal Theorem

Theorem (Hecke's Prime Ideal Theorem, 1918)

1. The number of in Gaussian integers Z[i] with
norm less than n grows like Li(n);

2. The angular components of Gaussian primes are
equidistributed over the circle.
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L-functions from the identities

For Schottky groups: Recall RHS = )" . logcy

Fls.m) = 3 (o ) logc,

2 g

where x : St — S is a unitary character given by x(z) = z™ for
some m € Z and s € C. Moreover, F(1,1) gives the RHS series in
the identity.

For quadratic polynomials:
w(l)\"
cm= ¥ () wor
e )]
w 1,12

where s € C, m € Z. Note that F(s) and G(s) converge absolutely
at least when Re(s) is large.
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Analytic properties of F(s, m) (resp. G(s, m))

Theorem (H., 2018)

For any m € Z, F(s,m) (resp. G(s, m)) converges absolutely if
and only if Re(s) > 0, where ¢ is the Hausdorff dimension of the
limit set (resp. Julia set).

Theorem (H., 2018)

1. If m=0, F(s,m) (resp. G(s,m)) is analytic on the half-plane
Re(s) > 0 — e for some € > 0 except a simple pole at s = 4.

2. If m+#0, F(s,m) (resp. G(s, m)) is analytic on the half-plane
Re(s) > 0 — e for some € > 0.



Counting complex orthospectrum
Theorem (H. 2018)

There exist constants C; > 0 and d; € (0,9) such that
#{w e L | R(d,w-0l)) < x} = Ce®™ + 0(eh) as x — co.
where { is the axis of the boundary element.

This result also appeared in Parkkonen-Paulin, Pollicott.



Counting complex orthospectrum
Theorem (H. 2018)

There exist constants C; > 0 and d; € (0,9) such that
#{w e L | R(d,w-0l)) < x} = Ce®™ + 0(eh) as x — co.
where { is the axis of the boundary element.

This result also appeared in Parkkonen-Paulin, Pollicott.
Equidistribution of holonomy:

Theorem (H. 2018)

For m # 0 and any non-Fuchsian Schottky group, there exist
C >0 and 0 < d; < 0 such that for any f € C?(S%), we have

3y f( e ) - Cx5/01 F(e2™)dt + O(x%)

||OgCW|71§X | Iog CW|

where the implied constant depends on the C?-norm of f.
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Parallel counting results for quadratic polynomials:
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Orbit counting for quadratic polynomials
Parallel counting results for quadratic polynomials:

Theorem (H., 2018)

There exist constants C; > 0 and dy € (0, 0) such that

#{w e {T1, To}* | [w(l)| > 1/x} = Gox® + O(x®%) as x — co.

Equidistribution of holonomy:
Theorem (H. 2018)

For m # 0, there exist C > 0 and 0 < dy < § such that for any
f € C?(SY), we have

S ot <|%§I> Ty /O " F(e)dt + O(x*)

lw (]~ <x

where the implied constant depends on the C?-norm of f.



Thank you!
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