The many facets of Basmajian's identity

Yan Mary He

University of Toronto

Hyperbolic Lunch University of Toronto July 1, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → りへぐ

hyperbolic geometry

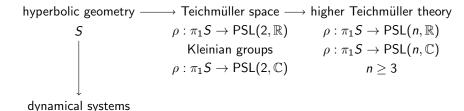
S

hyperbolic geometry \longrightarrow Teichmüller space $S \qquad \rho: \pi_1 S \rightarrow \mathsf{PSL}(2, \mathbb{R})$ Kleinian groups $\rho: \pi_1 S \rightarrow \mathsf{PSL}(2, \mathbb{C})$

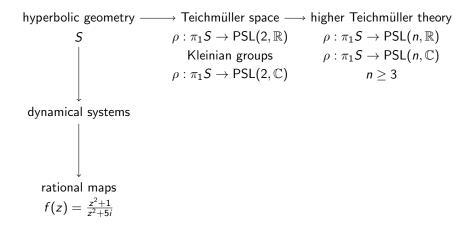
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

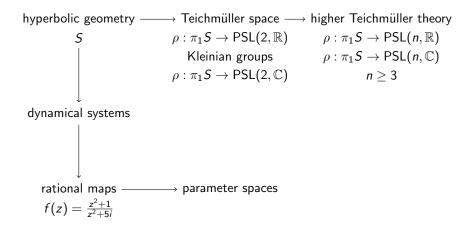
$\begin{array}{ccc} \text{hyperbolic geometry} & \longrightarrow & \text{Teichmüller space} & \longrightarrow & \text{higher Teichmüller theory} \\ S & \rho: \pi_1 S \to \mathsf{PSL}(2, \mathbb{R}) & \rho: \pi_1 S \to \mathsf{PSL}(n, \mathbb{R}) \\ & & \text{Kleinian groups} & \rho: \pi_1 S \to \mathsf{PSL}(n, \mathbb{C}) \\ & \rho: \pi_1 S \to \mathsf{PSL}(2, \mathbb{C}) & n \geq 3 \end{array}$

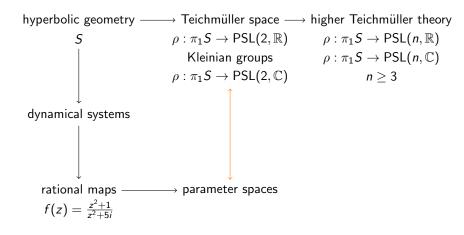
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

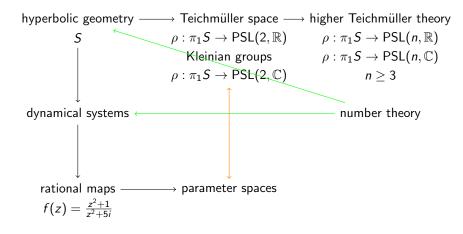


▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圖 - 釣ぬ⊙









I. Hyperbolic geometry

A hyperbolic surface is a 2-dimensional Riemannian manifold with constant negative curvature.

I. Hyperbolic geometry

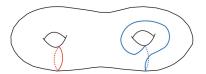
A hyperbolic surface is a 2-dimensional Riemannian manifold with constant negative curvature.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

I. Hyperbolic geometry

A hyperbolic surface is a 2-dimensional Riemannian manifold with constant negative curvature.

Geodesics on hyperbolic surfaces:



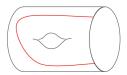
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Basmajian's identity

If S is a compact hyperbolic surface with geodesic boundary, an orthogeodesic γ on S is a properly immersed geodesic arc perpendicular to the boundary at both ends.

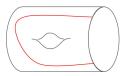
Basmajian's identity

If S is a compact hyperbolic surface with geodesic boundary, an orthogeodesic γ on S is a properly immersed geodesic arc perpendicular to the boundary at both ends.



Basmajian's identity

If S is a compact hyperbolic surface with geodesic boundary, an orthogeodesic γ on S is a properly immersed geodesic arc perpendicular to the boundary at both ends.



Theorem (Basmajian, 1991)

$$length(\partial S) = \sum_{\gamma} 2 \log \operatorname{coth}\left(\frac{length(\gamma)}{2}\right)$$

where the sum is taken over all orthogeodesics γ in S.

・ロト・雪・・雪・・雪・・ 白・ ろくの

II. Teichmüller spaces

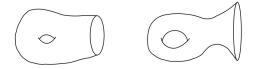
Let S be a compact surface with negative Euler characteristic. The *Teichmüller space* of S

 $\begin{aligned} \mathsf{Teich}(\mathcal{S}) &= \{ \mathsf{hyperbolic structures on } \mathcal{S} \} / \mathsf{homotopy} \\ &= \{ \mathsf{discrete faithful } \rho : \pi_1 \mathcal{S} \to \mathsf{PSL}(2,\mathbb{R}) \} / \mathsf{PSL}(2,\mathbb{R}) \end{aligned}$

II. Teichmüller spaces

Let S be a compact surface with negative Euler characteristic. The Teichmüller space of S

 $\begin{aligned} \mathsf{Teich}(\mathcal{S}) &= \{ \mathsf{hyperbolic structures on } \mathcal{S} \} / \mathsf{homotopy} \\ &= \{ \mathsf{discrete faithful } \rho : \pi_1 \mathcal{S} \to \mathsf{PSL}(2,\mathbb{R}) \} / \mathsf{PSL}(2,\mathbb{R}) \end{aligned}$



Complexifying Basmajian's identity

Thinking of the hyperbolic structure on S as a discrete faithful representation $\rho : \pi_1 S \to \mathsf{PSL}(2, \mathbb{R})$, our goal is to complexify the identity as we deform the representation into a Schottky representation $\rho : \pi_1 S \to \mathsf{PSL}(2, \mathbb{C})$.

Complexifying Basmajian's identity

Thinking of the hyperbolic structure on S as a discrete faithful representation $\rho : \pi_1 S \to \mathsf{PSL}(2, \mathbb{R})$, our goal is to complexify the identity as we deform the representation into a Schottky representation $\rho : \pi_1 S \to \mathsf{PSL}(2, \mathbb{C})$.

We need to address the convergence issue of the right hand side series.

Complexified Basmajian's identity: convergence theorem

Theorem (H., 2018)

Given a marked Schottky representation $\rho : F_n \to PSL(2, \mathbb{C})$, the series converges absolutely if and only if the Hausdorff dimension of the limit set Λ_{Γ} of the Schottky group $\Gamma = \rho(F_n)$ is strictly less than one.

Complexified Basmajian's identity: convergence theorem

Theorem (H., 2018)

Given a marked Schottky representation $\rho : F_n \to PSL(2, \mathbb{C})$, the series converges absolutely if and only if the Hausdorff dimension of the limit set Λ_{Γ} of the Schottky group $\Gamma = \rho(F_n)$ is strictly less than one.

Proof: conformal dynamics.

Complexified Basmajian's identity

Denote by $S_{<1}$ the space of Schottky groups whose limit set has Haudorff dimension less than one.

Theorem (H., 2018)

Suppose $\rho_0 : F_n \to PSL(2, \mathbb{C})$ is a Fuchsian marking corresponding to a hyperbolic surface S with geodesic boundary ∂S . Let $\alpha \in \pi_1 S$ represent the free homotopy class of ∂S . If ρ is in the same path component as ρ_0 in $S_{<1}$, then

$$l(\rho(\alpha)) = \sum_{w \in \mathcal{L}} \log[\infty, 0; \rho(w) \cdot \infty, \rho(w) \cdot 0] \mod 2\pi i \quad (1)$$

Moreover, the series converges absolutely.

III. Higher Teichmüller theory

• Hyperbolic structures on surfaces: $\rho: \pi_1 S \to \mathsf{PSL}(2,\mathbb{R})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

III. Higher Teichmüller theory

- Hyperbolic structures on surfaces: $\rho : \pi_1 S \to \mathsf{PSL}(2,\mathbb{R})$
- Anosov representations (Labourie, Guichard-Wienhard): $\rho : \pi_1 S \to G$, where G is a Lie group of higher rank.

III. Higher Teichmüller theory

- Hyperbolic structures on surfaces: $\rho: \pi_1 S \to \mathsf{PSL}(2,\mathbb{R})$
- Anosov representations (Labourie, Guichard-Wienhard): $\rho : \pi_1 S \to G$, where G is a Lie group of higher rank.

• Let $K = \mathbb{R}$ or \mathbb{C} . Following Pozzetti-Sambarino-Wienhard, we study (1, 1, 2)-hyperconvex Anosov representations $\rho : \pi_1 S \to PGL(n, K)$ and establish identities for such representations.

Identities for real (1, 1, 2)-hc Anosov representations

Theorem (H., 2019)

Let *S* be a connected compact oriented hyperbolic surface with geodesic boundary ∂S whose double \hat{S} has genus at least 2. Let $\alpha \in \pi_1 S$ represent the free homotopy classes of ∂S . If $\rho : \pi_1 S \to PGL(n, \mathbb{R})$ is the restriction to $\pi_1 S$ of a (1, 1, 2)-hyperconvex representation $\hat{\rho} : \pi_1 \hat{S} \to PGL(n, \mathbb{R})$, then

$$\ell_{\rho}(\rho(\alpha)) = \sum_{w \in \mathcal{L}} \log C_{\rho}(\alpha_j^+, \alpha_j^-; w \cdot \alpha_j^+, w \cdot \alpha_j^-)$$
(2)

where ℓ_{ρ} is a notion of length with respect to ρ , C_{ρ} is a cross ratio defined for four points on the boundary at infinity $\partial \pi_1 S$ and α_j^+, α_j^- are the attracting and repelling fixed points of α_j , respectively. Furthermore, if ρ is Hitchin, it is Vlamis-Yarmola's identity.

Identities for complex (1, 1, 2)-hc Anosov representations

Let $S_{<1}$ be the space of (1, 1, 2)-hyperconvex Anosov representations $\rho : \pi_1 S \to \mathsf{PGL}(n, \mathbb{C})$ whose limit set $\zeta^1(\partial \pi_1 S) \subset \mathbb{P}(\mathbb{C}^n)$ has Hausdorff dimension strictly smaller than one.

Theorem (H., 2019)

Let S be a connected compact oriented hyperbolic surface with geodesic boundary ∂S whose double has genus at least 2. Let $\alpha \in \pi_1 S$ represent the free homotopy classes of ∂S . If $\rho_0: \pi_1 S \to PGL(n, \mathbb{R})$ is (1, 1, 2)-hyperconvex and ρ is in the same path component as ρ_0 in $S_{<1}$, then

$$\ell_{\rho}(\rho(\alpha)) = \sum_{w \in \mathcal{L}} \log C_{\rho}(\alpha_j^+, \alpha_j^-; w \cdot \alpha_j^+, w \cdot \alpha_j^-) \mod 2\pi i,$$

where α_j^+, α_j^- are the attracting and repelling fixed points of α_j , respectively. Moreover, the series converges absolutely.

Identities for complex (1, 1, 2)-hc Anosov representations

Let $S_{<1}$ be the space of (1, 1, 2)-hyperconvex Anosov representations $\rho : \pi_1 S \to \mathsf{PGL}(n, \mathbb{C})$ whose limit set $\zeta^1(\partial \pi_1 S) \subset \mathbb{P}(\mathbb{C}^n)$ has Hausdorff dimension strictly smaller than one.

Theorem (H., 2019)

Let S be a connected compact oriented hyperbolic surface with geodesic boundary ∂S whose double has genus at least 2. Let $\alpha \in \pi_1 S$ represent the free homotopy classes of ∂S . If $\rho_0: \pi_1 S \to PGL(n, \mathbb{R})$ is (1, 1, 2)-hyperconvex and ρ is in the same path component as ρ_0 in $S_{<1}$, then

$$\ell_{\rho}(\rho(\alpha)) = \sum_{w \in \mathcal{L}} \log C_{\rho}(\alpha_j^+, \alpha_j^-; w \cdot \alpha_j^+, w \cdot \alpha_j^-) \mod 2\pi i,$$

where α_j^+, α_j^- are the attracting and repelling fixed points of α_j , respectively. Moreover, the series converges absolutely.

Proof: projective dynamics.

Consider $f : \mathbb{C} \to \mathbb{C}$ given by $f_c(z) = z^2 + c$ where $c \in \mathbb{C}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider $f : \mathbb{C} \to \mathbb{C}$ given by $f_c(z) = z^2 + c$ where $c \in \mathbb{C}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Iterates $f_c \circ f_c \circ f_c \cdots$

Consider $f : \mathbb{C} \to \mathbb{C}$ given by $f_c(z) = z^2 + c$ where $c \in \mathbb{C}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Iterates $f_c \circ f_c \circ f_c \cdots$

Filled-in Julia set $K_c = \{z \in \mathbb{C} \mid f_c^n(z) \not\to \infty\}.$

Consider $f : \mathbb{C} \to \mathbb{C}$ given by $f_c(z) = z^2 + c$ where $c \in \mathbb{C}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Iterates $f_c \circ f_c \circ f_c \cdots$

Filled-in Julia set $K_c = \{z \in \mathbb{C} \mid f_c^n(z) \not\to \infty\}.$

Julia set $J_c = \partial K_c$.

Consider $f : \mathbb{C} \to \mathbb{C}$ given by $f_c(z) = z^2 + c$ where $c \in \mathbb{C}$.

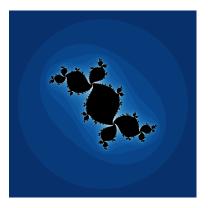
Iterates $f_c \circ f_c \circ f_c \cdots$

Filled-in Julia set $K_c = \{z \in \mathbb{C} \mid f_c^n(z) \not\to \infty\}.$

Julia set $J_c = \partial K_c$.

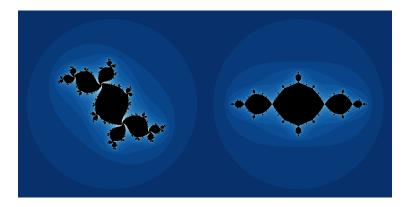
Example: $f(z) = z^2$. K_0 is the closed unit disk and $J_0 = S^1$.

Julia sets: Douady rabbit and Basilica

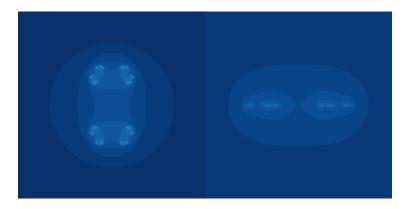


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Julia sets: Douady rabbit and Basilica

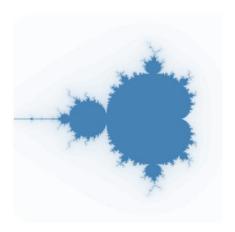


Cantor Julia sets



Quadratic polynomials: parameter space

Mandelbrot set $\mathcal{M} = \{ c \in \mathbb{C} \mid f_c^n(0) \not\to \infty \}.$



<ロト <回ト < 注ト < 注ト

-

Basmajian-type identities for $z^2 + c$

Denote by $(\mathbb{C} \setminus \mathcal{M})_{<1}$ the set of $c \in \mathbb{C} \setminus \mathcal{M}$ such that dim_H $J_c < 1$.

Theorem (H., 2018)

For complex parameter $c \in (\mathbb{C} \setminus \mathcal{M})_{<1}$, let T_1 and T_2 be the two branches of f_c^{-1} and z_1 be the fixed point of T_1 , then the following identity holds

$$z_1 - (-z_1) = \sum_{w \in \{T_1, T_2\}^*} (-1)^{\eta} \Big(w(T_1(-z_1)) - w(T_2(-z_1)) \Big)$$

where η is the number of T_2 's in the word w.

V. Geometry and topology of parameter spaces

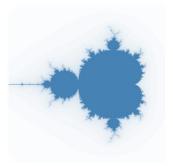
Mandelbrot set $\mathcal{M} = \{ c \in \mathbb{C} \mid f_c^n(0) \not\to \infty \}.$

イロト イポト イヨト イヨト

э

V. Geometry and topology of parameter spaces

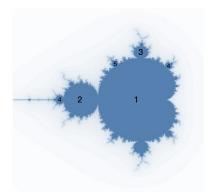
Mandelbrot set $\mathcal{M} = \{ c \in \mathbb{C} \mid f_c^n(0) \not\to \infty \}.$



• Topology of the complement of the Mandelbrot set.

V. Geometry and topology of parameter spaces

Mandelbrot set $\mathcal{M} = \{ c \in \mathbb{C} \mid f_c^n(0) \not\to \infty \}.$



- Topology of the complement of the Mandelbrot set.
- Geometry of a hyperbolic component of \mathcal{M} .

Topology of the shift locus

We consider the space X_d of monic and centered complex polynomials of degree $d \ge 2$, i.e. the space of polynomials of the form

$$f(z) = z^d + a_{d-2}z^{d-2} + \cdots + a_1z + a_0$$

Hence, X_d is naturally homeomorphic to \mathbb{C}^{d-1} .

Topology of the shift locus

We consider the space X_d of monic and centered complex polynomials of degree $d \ge 2$, i.e. the space of polynomials of the form

$$f(z) = z^d + a_{d-2}z^{d-2} + \cdots + a_1z + a_0$$

Hence, X_d is naturally homeomorphic to \mathbb{C}^{d-1} .

The shift locus S_d is the subset of polynomials for which every critical point goes to infinity under iterations of the polynomial.

Topology of the shift locus

We consider the space X_d of monic and centered complex polynomials of degree $d \ge 2$, i.e. the space of polynomials of the form

$$f(z) = z^d + a_{d-2}z^{d-2} + \cdots + a_1z + a_0$$

Hence, X_d is naturally homeomorphic to \mathbb{C}^{d-1} .

The shift locus S_d is the subset of polynomials for which every critical point goes to infinity under iterations of the polynomial.

Example: 0 is the only critical point of $f_c(z) = z^2 + c$. Recall: Mandelbrot set $\mathcal{M} = \{c \in \mathbb{C} \mid f_c^n(0) \not\to \infty\}$. Therefore S_2 is the complement of the Mandelbrot set. Topology of the shift locus (Cont'd)

 S_2 is the complement of the Mandelbrot set. It is topologically a circle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topology of the shift locus (Cont'd)

 S_2 is the complement of the Mandelbrot set. It is topologically a circle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $d \ge 3$, S_d is very complicated!

Topology of the shift locus (Cont'd)

 S_2 is the complement of the Mandelbrot set. It is topologically a circle.

For $d \geq 3$, S_d is very complicated!

Theorem (Bavard-Calegari-H.-Koch-Walker, 2019)

For $d \ge 2$, we develop a combinatorial model for the shift locus S_d . Using this model, we compute the fundamental group of S_3 and study the monodromy map $\pi_1 S_d \to MCG(\mathbb{R}^2 - Cantor set)$.

Geometry of hyperbolic components of rational maps

For each $d \ge 2$, let Rat_d be the space of degree d rational maps. Denote $\operatorname{rat}_d := \operatorname{Rat}_d / \operatorname{Aut}(\mathbb{P}^1)$ the moduli space of degree d rational maps.

Geometry of hyperbolic components of rational maps

For each $d \ge 2$, let Rat_d be the space of degree d rational maps. Denote $\operatorname{rat}_d := \operatorname{Rat}_d / \operatorname{Aut}(\mathbb{P}^1)$ the moduli space of degree d rational maps.

Theorem (H.-Nie, 2020)

Let \mathcal{H} be a hyperbolic component in rat_d such that $\dim_H(\mathcal{H}) \subset (1,2)$. Then we construct a Riemannian metric on \mathcal{H} which is conformal equivalent to the standard pressure metric.

VI. Number theory: relations to *L*-functions

VI. Number theory: relations to L-functions

Dirichlet's unit theorem expresses certain covolumes (of units in an algebraic number field) in terms of special values of *L*-functions, which have a series decomposition, of which the Riemann zeta function is the simplest example.

・ロト・日本・モート モー うへぐ

VI. Number theory: relations to L-functions

Dirichlet's unit theorem expresses certain covolumes (of units in an algebraic number field) in terms of special values of *L*-functions, which have a series decomposition, of which the Riemann zeta function is the simplest example.

Basmajian's identity expresses in a similar way a (co)volume as a series over topological terms.

The Riemann zeta function

Recall the *Riemann zeta function* $\zeta(s)$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

As a complex function of s,

- 1. $\zeta(s)$ is analytic in the half-plane Re(s) > 1.
- 2. $\zeta(s)$ has an analytic continuation to the whole *s*-plane except for a simple pole at s = 1 with residue 1.
- ζ(s) has no zeros in the half-plane Re(s) > 1. Zeros of ζ(s) are mysterious.

The Prime Number Theorem

Let $\pi(n) = \#\{\text{primes} \le n\}.$

The Prime Number Theorem

Let
$$\pi(n) = \#\{\text{primes } \leq n\}.$$

Theorem (Hadamard, de la Vallée-Poussin, 1899)

$$\pi(n) = Li(n) + O(ne^{-a\sqrt{\log n}})$$
 as $n o \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for some positive constant a.

 $Li(x) = \int_2^x \frac{dt}{\log t}.$

The Prime Ideal Theorem

Theorem (Hecke's Prime Ideal Theorem, 1918)

1. The number of prime ideals in Gaussian integers $\mathbb{Z}[i]$ with norm less than n grows like Li(n);

2. The angular components of Gaussian primes are equidistributed over the circle.

For Schottky groups: Recall $RHS = \sum_{w \in \mathcal{L}} \log c_w$

For Schottky groups: Recall $RHS = \sum_{w \in \mathcal{L}} \log c_w$

$$F(s,m) = \sum_{w \in \mathcal{L}} \chi\left(\frac{\log c_w}{|\log c_w|}\right) |\log c_w|^s$$

where $\chi : S^1 \to S^1$ is a unitary character given by $\chi(z) = z^m$ for some $m \in \mathbb{Z}$ and $s \in \mathbb{C}$. Moreover, F(1, 1) gives the RHS series in the identity.

For Schottky groups: Recall $RHS = \sum_{w \in \mathcal{L}} \log c_w$

$$F(s,m) = \sum_{w \in \mathcal{L}} \chi\left(\frac{\log c_w}{|\log c_w|}\right) |\log c_w|^s$$

where $\chi : S^1 \to S^1$ is a unitary character given by $\chi(z) = z^m$ for some $m \in \mathbb{Z}$ and $s \in \mathbb{C}$. Moreover, F(1, 1) gives the RHS series in the identity.

For quadratic polynomials:

$$G(s,m) = \sum_{w \in \{T_1,T_2\}^*} \left(\frac{w(I)}{|w(I)|}\right)^m |w(I)|^s$$

where $s \in \mathbb{C}$, $m \in \mathbb{Z}$.

For Schottky groups: Recall $RHS = \sum_{w \in \mathcal{L}} \log c_w$

$$F(s,m) = \sum_{w \in \mathcal{L}} \chi\left(\frac{\log c_w}{|\log c_w|}\right) |\log c_w|^s$$

where $\chi : S^1 \to S^1$ is a unitary character given by $\chi(z) = z^m$ for some $m \in \mathbb{Z}$ and $s \in \mathbb{C}$. Moreover, F(1, 1) gives the RHS series in the identity.

For quadratic polynomials:

$$G(s,m) = \sum_{w \in \{T_1,T_2\}^*} \left(\frac{w(I)}{|w(I)|}\right)^m |w(I)|^s$$

where $s \in \mathbb{C}$, $m \in \mathbb{Z}$. Note that F(s) and G(s) converge absolutely at least when Re(s) is large.

Analytic properties of F(s, m) (resp. G(s, m))

Theorem (H., 2018)

For any $m \in \mathbb{Z}$, F(s, m) (resp. G(s, m)) converges absolutely if and only if $Re(s) > \delta$, where δ is the Hausdorff dimension of the limit set (resp. Julia set).

Analytic properties of F(s, m) (resp. G(s, m))

Theorem (H., 2018)

For any $m \in \mathbb{Z}$, F(s, m) (resp. G(s, m)) converges absolutely if and only if $Re(s) > \delta$, where δ is the Hausdorff dimension of the limit set (resp. Julia set).

Theorem (H., 2018)

- 1. If m = 0, F(s, m) (resp. G(s, m)) is analytic on the half-plane $Re(s) > \delta \varepsilon$ for some $\varepsilon > 0$ except a simple pole at $s = \delta$.
- 2. If $m \neq 0$, F(s, m) (resp. G(s, m)) is analytic on the half-plane $Re(s) > \delta \varepsilon$ for some $\varepsilon > 0$.

Counting complex orthospectrum

Theorem (H. 2018)

There exist constants $C_1 > 0$ and $d_1 \in (0, \delta)$ such that

 $\#\{w \in \mathcal{L} \mid \Re(d(\ell, w \cdot \ell)) < x\} = C_1 e^{\delta x} + O(e^{d_1 x}) \text{ as } x \to \infty.$

where ℓ is the axis of the boundary element.

This result also appeared in Parkkonen-Paulin, Pollicott.

Counting complex orthospectrum

Theorem (H. 2018)

There exist constants $C_1 > 0$ and $d_1 \in (0, \delta)$ such that

 $\#\{w \in \mathcal{L} \mid \Re(d(\ell, w \cdot \ell)) < x\} = C_1 e^{\delta x} + O(e^{d_1 x}) \text{ as } x \to \infty.$

where ℓ is the axis of the boundary element.

This result also appeared in Parkkonen-Paulin, Pollicott. Equidistribution of holonomy:

Theorem (H. 2018)

For $m \neq 0$ and any non-Fuchsian Schottky group, there exist C > 0 and $0 < d_1 < \delta$ such that for any $f \in C^2(S^1)$, we have

$$\sum_{|\log c_w|^{-1} \leq x} f\left(\frac{\log c_w}{|\log c_w|}\right) = Cx^{\delta} \int_0^1 f(e^{2\pi i t}) dt + O(x^{d_1})$$

where the implied constant depends on the C^2 -norm of f.

Orbit counting for quadratic polynomials

Parallel counting results for quadratic polynomials:

Theorem (H., 2018)

There exist constants $C_2 > 0$ and $d_2 \in (0, \delta)$ such that

 $\#\{w \in \{T_1, T_2\}^* \mid |w(I)| > 1/x\} = C_2 x^{\delta} + O(x^{d_2}) \text{ as } x \to \infty.$

Orbit counting for quadratic polynomials

Parallel counting results for quadratic polynomials:

Theorem (H., 2018)

There exist constants $C_2 > 0$ and $d_2 \in (0, \delta)$ such that

 $\#\{w \in \{T_1, T_2\}^* \mid |w(I)| > 1/x\} = C_2 x^{\delta} + O(x^{d_2}) \text{ as } x \to \infty.$

Equidistribution of holonomy:

Theorem (H. 2018)

For $m \neq 0$, there exist C > 0 and $0 < d_2 < \delta$ such that for any $f \in C^2(S^1)$, we have

$$\sum_{|w(I)|^{-1} \leq x} f\left(\frac{w(I)}{|w(I)|}\right) = Cx^{\delta} \int_0^1 f(e^{2\pi it}) dt + O(x^{d_2})$$

where the implied constant depends on the C^2 -norm of f.

Thank you!