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Counting curves

Multicurves and simple closed curves

S: topological surface of genus g ≥ 0 and n punctures

simple closed curve: non-contractible curve on S without
auto-intersection
multicurve: disjoint union of simple closed curves on S
simple multicurve: distinct component are not homotopic

We always consider multicurves up to homotopy.
multicurve = simple multicurve + multiplicity on each component

topological type: an orbit under of multicurves under MCG(S)
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Counting curves

Types of simple closed curves

type ηnsep,(g,n): non-separating curve of genus g

type ηsep,(g1,n1),(g2,n2): separating in components of type (g1,n1) and
(g2,n2)

ηnsep,(2,0) = ηnsep,2 ηsep,(1,0),(1,0) = ηsep,1,1

What is the type of the following curve?
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Counting curves

Asymptotic counting with respect to the type

Theorem (Mirzakhani ’08)
For any type η of multicurve, there exists a positive rational constant
c(η) such that for any metric on S, as L→∞ we have

#{multicurves of type η and length ≤ L} ∼ B(metric) · c(η)

bg,n
· L6g−6 ,

where B(metric) is (implicitely) defined as

#{multicurves of length ≤ L} ∼ B(metric) · L6g−6 ,

and we have
∑

η c(η) =
∫

X B(X )dµWP(X ) = bg,n.
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Counting curves

The flat torus case (g,n) = (1,1)

T = R2/Z2

simple (multi)curves = primitive integral vector in R2 up to ±1
multicurves = integral vectors
mapping class group action = PSL(2,Z)
topological types = multiplicity: (u, v) 7→ gcd(u, v)

With respect to the L2-norm

#{multicurves of length ≤ L} ∼ π

2
· L2

and

c(k) =
1

4k2 b1,1 =
π2

24
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Counting curves

Separating vs non-separating in high genus

Theorem (Mirzakhani ’08)

#{multicurves of type η and length ≤ L} ∼ B(metric) · c(η)

bg
· L6g−6 .

Theorem (DGZZ’19)
For n = 0 (no puncture), as g →∞ we have∑

g1+g2=g

c(ηsep,g1,g2)

c(ηnsep,g)
∼

√
2

3πg
· 1

4g .

g 2 3 4
sep

non-sep
1
48 ' 0.021 5

1776 ' 0.0028 605
790992 ' 0.00076
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Ribbon graphs and correlators

Counting ribbon graphs (aka combinatorial maps)

Rg,n(b1, . . . ,bn): ribbon graphs of genus g, no vertex of degree 1, n
faces labeled from 1 to n and perimeters b1, b2, . . . , bn.

Ñg,n(b1,b2, . . . ,bn) := lim
L→∞

1
L6g−6+2n #Rg,n(Lb1,Lb2, . . . ,Lbn).

Theorem (Kontsevich’92, Norbury’11)

For (b1, . . . ,bn) such that b1 + b2 + . . .+ bn ≡ 0 mod 2, the numbers
Ñg,n(b1,b2, . . . ,bn) coincide with a homogeneous symmetric
polynomial Ng,n(b1,b2, . . . ,bn) in the b2

i of degree 6g − 6 + 2n with
rational coefficients.
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Ñg,n(b1,b2, . . . ,bn) coincide with a homogeneous symmetric
polynomial Ng,n(b1,b2, . . . ,bn) in the b2

i of degree 6g − 6 + 2n with
rational coefficients.

14 Octobre 2020 7 / 17



Ribbon graphs and correlators

Counting ribbon graphs (aka combinatorial maps)

Theorem (Kontsevich’92,Norbury’11)

For (b1, . . . ,bn) such that b1 + b2 + . . .+ bn ≡ 0 mod 2, the numbers
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polynomial Ng,n(b1,b2, . . . ,bn) in the b2

i of degree 6g − 6 + 2n with
rational coefficients.

Cg,n: integer compositions of 3g − 3 + n into n non-negative parts
For d = (d1,d2, . . . ,dn) ∈ Cg,n we define the correlator 〈d〉g,n as

Ng,n(b1,b2, . . . ,bn) =:
1

25g−6+2n

∑
d∈Cg,n

〈d〉g,n
d1!d2! · · · dn!

b2d1
1 b2d2

2 · · · b2dn
n .

Algebraic geometry note: the polynomials Ng,n are part of Kontsevich’s
proof of Witten conjecture. We have

〈d〉g,n =

∫
Mg,n

ψd1
1 ψ

d2
2 · · ·ψ

dn
n
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Ribbon graphs and correlators

Explicit formula in the unicellular case (n = 1)

We have
〈3g − 2〉g,1 =

1
24g · g!

.

In other words

Ng,1(b1) =
1

25g−6+2n
1

(3g − 2)!

1
24g · g!

b6g−4
1 .

Note: equivalent to the Lehman-Walsh’72, Harer-Zagier’86 formulas
for the exact counting of unicellular maps.
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Ribbon graphs and correlators

Asymptotic formula in the bicellular case (n = 2)

Let us introduce

h(d) =
1

24g · g!
· (6g − 1)!!∏n

i=1(2di + 1)!!

Theorem (DGZZ’19)

For any d ∈ Cg,2 we have 1− 2
6g − 1

≤
〈d〉g,2
h(d)

≤ 1.

Note: generalized in Aggarwal’20 for correlators with n ≥ 3.
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From correlators to c(η)

From simple multicurves to stable graphs

stable graph:

Decorated graph dual to a
multicurve and forgetting the
embedding in the surface

{topological types of simple multicurves} ' {stable graphs}
{topological types of multicurves} ' {weighted stable graphs}
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From correlators to c(η)

The coefficient c(η) and Kontsevich polynomials Ng,n

For each stable graph Γ (dual to a multicurve η) we associate a
polynomial with variables (be)e∈E(Γ) and define

PΓ(b) = Ag,n
1

2|V (Γ)|−1 ·
1

|Aut(Γ)|
·
∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Ngv ,nv (bv ).

where Ag,n =
22g−3+n

(6g − 6 + 2n) · (6g − 7 + 2n)!
.

Theorem (Mirzakhani ’08, DGZZ ’19)
For η is a simple multicurve and associated stable graph Γ we have

c(η) = Y(PΓ) whereY :
k∏

i=1

bmi
i 7→

k∏
i=1

mi !.
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From correlators to c(η)

c(η) for simple closed curves

Theorem (Mirzakhani ’08, DGZZ ’19)

c(η) = Y(PΓ) whereY :
k∏

i=1

bmi
i 7→

k∏
i=1

mi !.

Non-separating curve

c(ηnsep,g) =
1

Ag,n

1
2
Y
(
bNg−1,2(b,b)

)
Separating curve

c(ηsep,g1,g2) =
1

Ag,n

1
Aut
Y
(
bNg1,1(b)Ng2,1(b)

)
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Idea of proofs

Mirzakhani’s curve counting theorem

{multicurves on S} = {integral points inML(S)}

It follows that as L→∞

{all multicurves of length ≤ L} ∼ B(metric) · L6g−6.

The fact that for each type of multicurves η its proportion c(η)/bg
exists and is positive relies on the ergodic action of MCG(S) on
ML(S) (Masur’85).
The explicit formula for c(η) can be proven via Weil-Petersson volumes
(Mirzakhani’08) or square-tiled surface counting (DGZZ’19).
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Idea of proofs

Asymptotics of 2-correlators

Witten conjecture (Kontsevich theorem) states that the correlators
〈d〉g,n satisfy recurrence relations.

They restrict to simple ones for
2-correlators 〈d〉g,2 (Zograf’18).

One can then prove by induction

1− 2
6g − 1

≤
〈d〉g,2
h(d)

≤ 1.
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Idea of proofs

From asymptotics of 2-correlators to c(η)

Recall that 1-correlators and 2-correlators are respectively the
coefficients of Ng,1(b1) and Ng,2(b1,b2).

From the formulas c(ηnsep,g) =
1

Ag,n

1
2
Y
(
bNg−1,2(b,b)

)
and

c(ηsep,g1,g2) =
1

Ag,n

1
Aut
Y
(
bNg1,1(b)Ng2,1(b)

)
, we deduce asymptotics

for c(ηnsep,g) and c(ηsep,g1,g2).
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Further remarks

Further remarks

(weak) generalization to multicurves with more components using
Aggarwal’20 (DGZZ’20)
for generic hyperbolic metric, the separating systole has order
2 log(g) (Mirzakhani’13, Nie-Wu-Xue’20)
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