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Abstract

We prove that the sequence of Masur-Smillie-Veech (MSV) distributed random

translation surfaces, with area equal to genus, Benjamini-Schramm converges as genus

tends to infinity. This means that for any fixed radius r > 0, if Xg is an MSV-

distributed random translation surface with area g and genus g, and o is a uniformly

random point in Xg, then the radius-r neighborhood of o in Xg, as a pointed measured

metric space, converges in distribution to the radius r neighborhood of the root in

a Poisson translation plane, which is a random pointed surface we introduce here.

Along the way, we obtain bounds on statistical local geometric properties of translation

surfaces, such as the probability that the random point o has injectivity radius at most

r, which may be of independent interest.

1 Introduction

Benjamini-Schramm convergence is a notion of convergence for sequences of (random) finite

graphs, finite-volume manifolds, and, more generally, measured metric spaces [BS01, AB22,

Khe20]. A sequence (Xi)i of random metric spaces, each equipped with a finite measure, is
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said to Benjamini-Schramm converge to a random pointed metric space (X∞, o∞) if, when

oi is a random point in Xi, the law of (Xi, oi) converges to the law of (X∞, o∞) in the

space of Borel probability measures on the space of pointed measured metric spaces. Here,

we use the weak topology on the space of measures and the pointed Gromov-Hausdorff-

Prokhorov topology on the space of pointed translation surfaces. Intuitively, Benjamini-

Schramm convergence describes the local geometry and structure experienced by a “typical”

point on Xi as i → ∞.

This notion of convergence naturally generalizes to manifolds endowed with additional

structures, such as translation surfaces. A translation surface consists of a compact connected

surfaceX, a finite set Σ ⊂ X, and a translation structure onX−Σ. This translation structure

is a maximal atlas of charts to C on X−Σ such that the transition maps are translations. It

induces a Riemann surface structure on X−Σ, which extends naturally to the entire surface

X. Moreover, the differential dz, being invariant under translations, does not depend on

the choice of chart. These local differentials glue together to define a global holomorphic

1-form ω on X. There is also a locally Euclidean metric on X −Σ which defines a notion of

Lebesgue measure of X. In the complex-analytic language, the measure is given by the area

form i
2
(ω ∧ ω̄). Points in Σ are cone points where the total angle is a multiple of 2π. A cone

point where the total angle is 2π(k + 1) is called a singularity of order k.

Let Hg and Hhyp
g denote the spaces of genus g translation surfaces of area 1 and area g,

respectively. The notation reflects the fact that a translation surface in Hhyp
g has an area

comparable to the hyperbolic area of the underlying Riemann surface.

Due to the work of Masur and Veech [Mas82, Vee86], each space admits a finite Lebesgue-

class measure, denoted by µg on Hg and µhyp
g on Hhyp

g , referred to as the Masur-Smillie-Veech

measures. There is a natural measure µhyp
g∗ defined on the set of pointed translation surfaces

(X, o), where X ∈ Hhyp
g , given by the disintegration formula:

dµhyp
g∗ (X, o) = dµX(o) dµ

hyp
g (X),

where µX is the Euclidean area measure onX. Since both µX and µhyp
g are finite, the measure

µhyp
g∗ is also finite. We define the corresponding probability measures:

Phyp
g∗ =

µhyp
g∗

g · µhyp
g (Hhyp

g )
and Pg =

µg

µg(Hg)
.
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Let T∗ denote the space of all pointed connected translation surfaces up to isomorphism,

where all singularities are of finite order and the set of singularities is discrete. The space T∗

can be endowed with a complete, separable metric using the Gromov-Hausdorff-Prokhorov

topology (see [ADH13] and [Khe20]). We view Phyp
g∗ as a measure on this space.

Our main theorem is:

Theorem 1.1. The sequence
{
Phyp
g∗

}∞
g=2

converges weakly to the distribution of the Poisson

translation plane with intensity 4.

In essence, Theorem 1.1 states that in a typical high-genus translation surface of area g, a

typical point perceives no topology, and the “visible” singularities are distributed according

to a Poisson point process with intensity 4. We provide a more detailed description of Poisson

translation planes below.

Note that an intensity of 4 is expected. To see this, define Nr : X → N, where Nr(o) is

the number of singularities visible from o that are at most distance r from o. If Theorem

1.1 holds with intensity λ, then asymptotically and on average we have,

Nr ∼ λ · 2πr2, (1)

as the generic point is a regular point. On the other hand,∫
X

Nr =
∑
σ∈Σ

(area of the visible ball of radius r around σ).

Assuming that the ball of radius r around σ is generically planar, the right-hand side of this

equation becomes (2g − 2)4πr2 (There are (2g − 2) singular points on a surface of genus g).

Using (1) and the fact that the area of X is g, we have:

g · λ · 2πr2 ∼ (2g − 2)4πr2.

That is, as g → ∞, we have λ → 4.

1.1 What is a Poisson translation plane?

We begin by describing some properties of a Poisson translation plane. It is a random

pointed translation surface (P, o) equipped with a holomorphic 1-form ω, and it is conformally
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equivalent to the hyperbolic plane. With probability 1, the point o is regular, and all

singularities are of order one.

If γ is any path in P , its holonomy is the complex number hol(γ) =
∫
γ
ω. A point y ∈ P

is said to be visible from a point x ∈ P if there exists a geodesic from x to y that does not

pass through any singularities in its interior. The visible set of x is the set of all points

y ∈ P that are visible from x. The visible singularities of x are defined similarly.

The structure of P is easiest to understand from the perspective of the base point o ∈ P .

Consider the collection {hol(γ)}γ, where γ ranges over all geodesics from o to a visible

singularity. In a Poisson translation plane, this collection of complex numbers forms a

Poisson point process Πo on C. Each singularity σ visible from o is of order 1, with a cone

angle of 4π.

At each such singularity σ, there is a sector Sectorσ ⊂ P of angle 2π comprised of

points visible from σ but not from o. Holonomy maps this sector to a dense open subset

hol(Sectorσ) ⊂ C of the complex plane. The set {hol(γ)}γ of holonomies of geodesics γ

connecting σ to a singularity τ ∈ Sectorσ also forms a Poisson point process Πσ on C.

Continuing in this manner, for each τ ∈ Sectorσ, there exists a sector Sectorτ of angle 2π

at τ , consisting of points not visible from σ but visible from τ . The singularities in Sectorτ

visible from τ also form a Poisson point process.

In the Poisson translation plane, all of these Poisson point processes are jointly inde-

pendent and share the same intensity. This common intensity defines the intensity of the

Poisson translation plane.

One can construct a Poisson translation plane of intensity λ > 0 in the following way. Let

Co be a copy of the complex plane and set o to be 0 ∈ Co. Sample a Poisson point process Πo

of intensity λ in Co. At each point x ∈ Πo, we make a cut along the ray rayx = [1,∞] ·x and

take the path-metric completion. We call this a slit-plane. Let Cx be a copy of the complex

plane. Cut Cx along the ray [0,∞] · x and take the path-metric completion. Now glue this

to the slit-plane by identifying boundary-components in a holonomy-preserving manner. We

have now constructed the depth 1 approximation to the Poisson translation plane.

Now, on each Cx, we take another Poisson point process Πx of intensity λ, all jointly

independent, and perform the exact same procedure. Continuing this process forever ends

with a Poisson translation plane of intensity λ. This is made more precise in our upcoming
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paper [BRV].

1.2 Scaling

In the literature, particularly in Teichmüller dynamics, it is common to focus on unit-area

translation surfaces. The number of singularities (counted with multiplicity) on such a

surface is of order g, the genus. As g → ∞, the number of singularities expected in a ball

of radius r around a uniformly random basepoint in a unit-area translation surface grows

without bound. In particular, by local compactness, singularities will accumulate in any

Benjamini-Schramm limit. While it is possible to study such limits, they are not the focus

of this manuscript.

Instead, we scale the metric on unit-area translation surfaces by
√
g, giving surfaces with

area g. This scaling allows us to translate fluently between unit-area and area g translation

surfaces. For instance, if Y =
√
g · X and X is a unit-area translation surface, then there

is a natural bijection between Y and X. The radius R ball in Y corresponds to a ball of

radius R√
g
in X. Scaling by

√
g ensures that, at least intuitively, the expected number of

singularities in a ball of radius R around a typical basepoint in Y is bounded by a function

of R, and this number is positive. On the other hand, if the area scales super-linearly with

genus, then the Benjamini-Schramm limit is almost surely C. This means that with high

probability, there are no singularities near a randomly chosen basepoint.

Thus, the critical case occurs when the area of the translation surface grows linearly with

the genus. We choose area g for convenience, but a qualitatively equivalent limit can be

obtained for any linearly growing area in g. Indeed, suppose (Xg, og) is sampled randomly

from Phyp
g∗ as in Theorem 1.1. Now let sXg be the same surface as Xg with its metric

multiplied by s. Then the area of sXg is s2g. A ball of radius R in Xg corresponds with a

ball of radius sR in sXg. The average number of singularities visible from the root in the ball

of radius R centered at og in Xg limits on 4πR2 as g → ∞, because (Xg, og) BS-converges

to a Poisson translation plane of intensity 4. So the average number of singularities visible

from the root in the ball of radius sR centered at og in sXg also limits on 4πR2. This implies

that (sXg, og) BS-limits to a Poisson translation plane with intensity 4πR2

π(sR)2
= 4/s2.

For example, one could set the area of the translation surface equal to the hyperbolic
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area 2π(2g − 2). In this case, the intensity of the Poisson translation plane in Theorem 1.1

would be λ = 1
π
.

1.3 Estimates for unit-area translation surfaces

The proof of Theorem 1.1 is done in three main steps. First, we prove that Phyp
g∗ -random

translation surfaces do not have too many singularities near the basepoint; we then prove pla-

narity of the limit. These two results together imply tightness of
{
Phyp
g∗

}
g≥2

. By Prokhorov’s

Theorem, this implies existence of subsequential limits. We then must prove, for example,

that the number of singularities visible from the root in a ball of radius R converges in dis-

tribution to a Poisson random variable. Moreover, the holonomies of the shortest paths from

the root to these singularities are uniformly distributed. This is only an example because

there may be singularities in the radius R ball that are not visible to the root and we also

need to describe the distribution of their positions relative to the root.

The proof therefore requires three kinds of estimates on unit-area translation surfaces.

We state below the versions of these estimates when the basepoint is conditioned to be a

fixed (label of a) singularity. Rigorous statements involving random basepoints sampled

according to Euclidean area appear in [BRV].

The following estimate deals with the case of too many singularities near the basepoint.

Proposition 1.2. There exists a universal constant C > 0 such that the following holds.

Let (X,ω) ∼ Pg be a random translation surface of genus g and area 1 distributed according

to Masur-Smillie-Veech measure. Let σ, τ be fixed (labels of) singularities in X. Let r > 0

and dX denote the flat metric on X. Then

Pg[dX(σ, τ) ≤ r] ≤ C

g
exp(4r

√
πg).

The next estimate deals with the probability that the injectivity radius at a uniformly

random point is small; this is necessary to prove planarity of the Benjamini-Schramm limit as

well as tightness. It is easier to first prove such for singularities. For a (label of a) singularity

σ in a translation surface (X,ω), we let injradX(σ) denote the supremum of radii r such that

the metric ball of radius r about σ is simply connected.
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Proposition 1.3. Let (X,ω) ∼ Pg be a random unit-area translation surface of genus g

distributed according to Masur-Smillie-Veech measure. Let σ be a fixed (label of a) singularity

in X and R > 0. Then

Pg

[
injradX(σ) <

R
√
g

]
= oR(1).

as g → ∞.

The notation oR(1) means that

P
[
injradX(o) <

R
√
g

]
= f(R, g)

for some function f such that

lim
g→∞

f(R, g) = 0

for all R > 0.

We lastly compute the limiting distribution of visible singularities. In [BRV], we also

show joint independence between multiple distinct singularities.

Proposition 1.4. Let (X,ω) ∼ Pg be a Masur-Smillie-Veech random unit-area translation

surface of genus g, and let σ be a fixed singularity in X. Let Σvis(X, σ, r) denote the set of

singularities τ such that τ is visible from σ in the ball of radius r centered at σ. Then for

every R > 0 and k ∈ N ∪ {0},

P
(
#Σvis

(
X, σ,

R
√
g

)
= k

)
=

(
2g − 3

k

)(
4πR2

g

)k (
1− 4πR2

g

)2g−k−3

+ ok,R(1)

as g → ∞.

Corollary 1.5. With the notation of Proposition 1.4, we have

lim
g→∞

P
(
#Σvis

(
X, σ,

R
√
g

)
= k

)
=

(8πR2)
k

k!
e−8πR2

.

In other words, the random variables Ng = #Σvis

(
X, σ, R√

g

)
converge in distribution to a

Poisson random variable with mean 8πR2 as g → ∞.

Proof of Corollary 1.5. Sending g → ∞, we apply the approximation(
2g − 3

k

)
∼ (2g)k

k!
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to the estimate in Proposition 1.4, obtaining

P
(
#Σvis

(
X, σ,

R
√
g

)
= k

)
∼ 2kgk

k!
· (4πR

2)
k

gk

(
1− 4πR2

g

)2g−k−3

.

Taking the limit as g → ∞ completes the proof.

1.4 Related literature

Benjamini-Schramm convergence was introduced by Itai Benjamini and Oded Schramm to

study random connected planar graphs [BS01]. Such a notion admits natural generalizations

to metric spaces and manifolds with additional structure [Khe23]. One can understand the

notion of Benjamini-Schramm limit to be an answer to the question “what it is like to live at

a typical point in the space?” Some examples of Benjamini-Schramm convergence include:

1. If Gn is a uniformly random d-regular graph with n vertices and rn ∈ Gn is a root

vertex chosen at random, then the pairs (Gn, rn) Benjamini-Schramm converge to a d-

regular tree. Indeed, one can show that for any t larger than 2, the number of cycles of

length t in Gn converges to a Poisson random variable with parameter (d−1)t

2t
. However,

there are n vertices, so most vertices do not lie on a cycle of length t as n tends to

infinity with t held fixed. See [Wor99, Theorem 2.5] for more details.

2. The Benjamini-Schramm limit for Weil-Petersson random high genus hyperbolic sur-

faces was proven to be the hyperbolic plane by Monk [Mon22] using techniques of

Mirzakhani [Mir13]. In particular, for any R > 0, most points in a generic hyperbolic

surface X of high genus are far from any simple closed curve of length ≤ R.

3. In [BL21], it shown that if, for every genus g ≥ 2, one chooses uniformly at random

a triangulation of a surface of genus g with n triangles (where n is proportional to

g) then these graphs Benjamini-Schramm converge to a Planar Stochastic Hyperbolic

Triangulation, which is a random triangulation of the hyperbolic plane introduced

in [Cur16]. This confirms a conjecture of Benjamini and Curien. This result was

inspirational to us in the early stages of this project.

4. In [MR22], similar results are obtained regarding the Benjamini-Schramm limits of

periodic orbits in homogeneous spaces and the moduli space of translation surfaces.
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Let us digress on high genus random hyperbolic surfaces and compare it with the current

work. The moduli space of hyperbolic surfaces Mg of genus g admits a finite measure µg
WP

called Weil-Petersson measure. In the mid to late 2000s, Maryam Mirzakhani developed a

way to integrate “geometric” functions f : Mg → R+ according to µWP — her famous inte-

gration formula [Mir06]. The integration formula enabled Mirzakhani to develop recursive

relations among the volumes of various moduli spaces of bordered hyperbolic surfaces. While

some of these volumes were known via other methods, the recursive relations enabled her to

obtain asymptotics for these volumes as genus tends to infinity in [Mir13]. Utilizing these

asymptotics and her integration formula, she estimated statistical features of high genus

random hyperbolic surfaces. For instance, using her results on the number of simple closed

curves of bounded length, Mirzakhani proved1 that for µg
WP -random hyperbolic surfaces X,

Pµg
WP

[
1

vol(X)
volX

({
x ∈ X : injrad(x) <

1

6
log(g)

})]
= O(g−1/3),

where volX is the hyperbolic area on X. The above implies that as genus tends to infinity, a

uniformly random point (with respect to hyperbolic area) has injectivity radius tending to

infinity. It follows that if the Benjamini-Schramm limit of hyperbolic surfaces exists, then it

is almost surely simply connected.

One of the crowning jewels of the field is the result of Mirzakhani and Petri [MP19],

which proved that as g → ∞, the collection of lengths of the simple closed geodesics on

µg
WP-random hyperbolic surface X forms a Poisson point process on R+. We note that the

intensity measure of the Poisson point process is not Lebesgue!

In [MRR24] Masur, Randecker and Rafi obtain analogous results to Mirzakhani and Petri

for high genus translation surfaces. They prove that the number of saddle connections of

lengths in fixed intervals are independent Poisson random variables as genus tends to infinity.

Though similar to the present work, their theorems differ in that they deal with the global

situation, whereas we focus entirely on local phenomena. For instance, while Theorem 1.1

can be used to prove that the number of saddle connections with lengths in a fixed bounded

interval is Poisson distributed locally, our techniques do not readily extend to the global

case, as we rely heavily on our planarity result.

1The bound presented here is a corrected version of Mirzakhani’s original asymptotic which was provided

by Laura Monk [Mon22].
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1.5 Techniques

In the current work, our approach is somewhat analogous to Mirzakhani’s and Monk’s de-

tailed above. There is a large body of work related to translation surfaces that was developed

between the 1980s and early 2000s prior to Mirzakhani’s breakthroughs. The analogous tool

to Mirzakhani’s integration formulas in our setting of translation surfaces is Siegel-Veech

theory, which allows us to integrate, or compute expected values of, various “geometric func-

tions” on moduli spaces of translation surfaces. On the other hand, the conjectured volume

asymptotics for strata of translation surfaces were only proven somewhat recently by Aggar-

wal [Agg20]; he also similarly computed the asymptotic values of Siegel-Veech constants in

[Agg19].

There are, however, several new challenges in proving the planarity of the Benjamini-

Schramm limit for high genus random translation surfaces, challenges that do not arise in

the case of hyperbolic surfaces. While Siegel-Veech theory provides effective estimates for

the number of closed saddle connections of a given length in a generic translation surface,

it does not directly extend to general closed geodesics, particularly those passing through

multiple singularities. Developing new ideas to handle these geodesics was a key aspect of

our work. A significant portion of the effort in this project was devoted to ruling out short

geodesics as part of establishing the planarity of the Benjamini-Schramm limit.

Our approach to proving planarity involves showing that if X contains a short simple

closed geodesic near a basepoint o, then there exists a nearby surface X ′, possibly lying in a

lower-dimensional stratum, that has a short closed saddle connection, or a pair of homologous

saddle connections, near the basepoint o′ of X ′. Using the results of Aggarwal and the Siegel-

Veech framework, we show that the volume of translation surfaces containing short simple

closed geodesics near the basepoint is asymptotically negligible compared to the volume of

the entire stratum as genus tends to infinity.

There is also the case of simple closed geodesics that do not pass through any singular-

ities. These geodesics lie in cylinders foliated by parallel simple closed geodesics and are

more straightforward to handle. Here again, Siegel-Veech theory proves to be valuable. For-

tunately, this case has essentially been addressed in the work of Masur, Rafi, and Randecker

[MRR22], which also relies on Aggarwal’s volume asymptotics.
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It is important to note the results regarding Siegel-Veech constants of pairs of saddle

connections, such as the work of Athreya, Fairchild, and Masur [AFM23]. These are unfor-

tunately inadequate for the problem we seek to solve because we need to deal with chains

of n saddle connections, for arbitrary n. The central driver of their result on pairs of sad-

dle connections involves the fact that Siegel-Veech transforms of characteristic functions of

balls about 0 are in L2. This is a result of Athreya, Cheung, and Masur [ACM19]; on the

other hand, it was shown by Athreya and Chaika [AC12] that the Siegel-Veech transform

of a characteristic function of a ball about 0 is not in L3, thus crushing hopes that their

techniques could be used to study n-tuples of saddle connections, for n > 2.

Our central technique is composing together many surgeries. These surgeries, considered

individually, are not new; they closely resemble those found in the works of Eskin, Masur,

and Zorich [EMZ03], Schiffer variations, and rel flow [CW24]. However, our approach differs

in that we must compose many surgeries together and carefully track additional information

about their effects on individual surfaces, such as the holonomies of paths.

We refer to our surgeries as “star surgeries.” The geometric perspective afforded by

star surgeries is both robust and flexible, enabling us to control complications that would

arise if we attempted to directly apply the surgery techniques available in the literature.

By composing these star surgeries, we construct measure-preserving maps between specific

subsets of strata, all while maintaining careful control of the relevant geometric information.

Notably, each proposition in Section 1.3 relies on a distinct composite surgery tailored to its

specific requirements.
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