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Abstract. We show how to derive hyperbolicity of the free factor complex of FN from the
Handel–Mosher proof of hyperbolicity of the free splitting complex of FN , thus obtaining an
alternative proof of a theorem of Bestvina–Feighn. We also show that under the natural map
� from the free splitting complex to free factor complex, a geodesic Œx; y� maps to a path that
is uniformly Hausdorff-close to a geodesic Œ�.x/; �.y/�.
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1. Introduction

The notion of a curve complex, introduced by Harvey [17] in late 1970s, plays a key
role in the study of hyperbolic surfaces, mapping class group and the Teichmüller
space.

If S is a compact connected oriented surface, the curve complex C.S/ of S is
a simplicial complex whose vertices are isotopy classes of essential non-peripheral
simple closed curves. A collection Œ˛0�; : : : ; Œ˛n� of .nC 1/ distinct vertices of C.S/

spans an n-simplex in C.S/ if there exist representatives ˛0; : : : ; ˛n of these isotopy
classes such that for all i ¤ j the curves ˛i and j̨ are disjoint. (The definition of
C.S/ is a little different for several surfaces of small genus). The complex C.S/

is finite-dimensional but not locally finite, and it comes equipped with a natural
action of the mapping class group Mod.S/ by simplicial automorphisms. It turns
out that the geometry of C.S/ is closely related to the geometry of the Teichmüller
space T .S/ and also of the mapping class group itself. The curve complex is a
basic tool in modern Teichmüller theory, and has also found numerous applications
in the study of 3-manifolds and of Kleinian groups. A key general result of Masur
and Minsky [23] says that the curve complex C.S/, equipped with the simplicial
metric, is a Gromov-hyperbolic space. Hyperbolicity of the curve complex was an
important ingredient in the solution by Masur, Minsky, Brock and Canary of the
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Ending Lamination Conjecture [24], [27], [10] (see [26] for detailed background
discussion about this solution).

The outer automorphism group Out.FN / of a free group FN is a cousin of the
mapping class group. However the group Out.FN / is much less well understood and,
in general, more difficult to study than the mapping class group. A free group analog
of the Teichmüller space is the Culler–Vogtmann Outer space cvN , introduced by
Culler and Vogtmann in [11]. The points of cvN are free minimal discrete isometric
actions of FN on R-trees, considered up to FN -equivariant isometry. The Outer
space comes equipped with a natural action of Out.FN /. It is known that cvN is
finite-dimensional and contractible; as a result, quite a bit is known about homotopy
properties of Out.FN /. However, the geometry of cvN and of Out.FN / proved to
be much more difficult to tackle, particularly because cvN lacks the various useful
analytic and geometric structures present in the Teichmüller space case. Another
problem is that many geometric dualities from the world of Riemann surfaces and
their homeomorphisms break down for automorphisms of free groups.

In the case of a compact connected oriented surface S , an essential non-peripheral
simple closed curve ˛ on S can be viewed in several other ways. Thus one can view
Œ˛� as a conjugacy class in the fundamental group �1.S/. We may also think of
˛ as corresponding to the (possibly disconnected) subsurface K˛ of S obtained by
cutting S open along ˛. Third, ˛ determines a splitting of �1.S/ as an amalgamated
product or an HNN-extension (depending on whether the curve ˛ is separating or
non-separating) over the infinite cyclic subgroup h˛i. We can interpret adjacency
of vertices in C.S/ using each of these points of views – or a combination of them,
providing several essentially equivalent descriptions of the curve complex. Thus two
distinct vertices Œ˛�; Œˇ� of C.S/ are adjacent if and only if ˛ is conjugate in �1.S/

to an element of a vertex group of the cyclic splitting of �1.S/ corresponding to ˇ.
Equivalently, Œ˛� and Œˇ� of C.S/ are adjacent if and only if the cyclic splittings of
�1.S/ corresponding to Œ˛� and Œˇ� admit a common refinement, that is, a splitting of
�1.S/ as the fundamental group of a graph of groups with two edges and cyclic edge
groups, such that collapsing one of the edges produces a splitting corresponding to
Œ˛� and collapsing the other edge produces a splitting corresponding to Œˇ�. Also, Œ˛�
and Œˇ� are adjacent in C.S/ if and only if there are connected componentsK 0̨ ofK˛

and K 0
ˇ

of Kˇ such that K 0̨ � K 0
ˇ

or K 0
ˇ

� K 0̨ .
In the case of FN these different points of view produce several possible analogs

of the notion of a curve complex that are no longer essentially equivalent. The first of
these is the free splitting complex FSN . The vertices of FSN are nontrivial splittings
of the type FN D �1.A/ where A is a graph of groups with a single edge (possibly
a loop edge) and the trivial edge group; two such splittings are considered to be the
same if their Bass–Serre covering trees are FN -equivariantly isometric. Two distinct
vertices A and B of FSN are joined by an edge if these splittings admit a common
refinement, that is, a splitting FN D �1.D/ where D is a graph of groups with two
edges and trivial edge groups, such that collapsing one edge gives the splitting A and
collapsing the other edge produces the splitting B. Higher-dimensional simplices
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are defined in a similar way, see Definition 3.2 below for a careful formulation. For
example, if FN D A � B � C , where A;B;C are nontrivial, then the splittings
FN D .A � B/ � C and FN D A � .B � C/ are adjacent in FSN . There is a natural
action of Out.FN / on FSN by simplicial automorphisms. The above definition of
FSN has a variation [29], called the edge-splitting complex, denoted ESN , where in
the definition of vertices only splittings A with a single non-loop edge are allowed.

A rather different free group analog of the curve complex is the free factor complex
FFN , originally introduced by Hatcher and Vogtmann [18]. The vertices of FFN are
conjugacy classes ŒA� of proper free factors A of FN . Two distinct vertices ŒA�; ŒB�
are joined by an edge in FFN if there exist representatives A of ŒA� and B of ŒB�
such that A � B or B � A. Higher-dimensional simplices are defined similarly,
see Definition 3.1 below. Note that this definition does not work well forN D 2 as it
produces a graph consisting of isolated vertices corresponding to conjugacy classes
of primitive elements in F2. However, there is a natural modification of the definition
of FFN for N D 2 (see [4]) such that FF2 becomes the standard Farey graph (and in
particular FF2 is hyperbolic).

A closely related object to FFN is the simplicial intersection graph IN . The
graph IN is a bipartite graph with two types of vertices: single-edge free splittings
FN D �1.A/ (that is, vertices of FSN ) and conjugacy classes of simple elements of
FN . Here an element a 2 FN is simple if a belongs to some proper free factor of
FN . A free splitting A and a conjugacy class Œa� of a simple element a are adjacent
if a is conjugate to an element of a vertex group of A. The graph is a subgraph of a
more general “intersection graph” defined in [20].

Both FFN and IN admit natural Out.FN /-actions. It is also not hard to check
that for N � 3 the graph IN is quasi-isometric to the free factor complex FFN . By
contrast, the free factor complex FFN and the free splitting complex FSN are rather
different objects geometrically. By construction, the vertex set V.FSN / is a 1-dense
subset of V.IN /. Also, the inclusion map � W .V .FSN /; dFSN

/ ! .IN ; dIN
/ is 2-

Lipschitz. However the distance between two free splittings in IN is generally much
smaller than the distance between them in FSN . Intuitively, it is “much easier” for A
and B to share a common elliptic simple element (which would make dIN

.A;B/ � 2)
then for these splittings to admit a common refinement.

Until recently, basically nothing was known about the geometry of the above com-
plexes. Several years ago Kapovich–Lustig [20] and Behrstock–Bestvina–Clay [2]
showed that for N � 3 the (quasi-isometric) complexes FFN and IN have infinite
diameter. Since the inclusion map � above is Lipschitz, this implies that FSN has
infinite diameter as well. A subsequent result of Bestvina–Feighn [3] implies that
every fully irreducible element ' 2 Out.FN / acts on FFN with positive asymptotic
translation length (hence the same is true for the action of ' on FSN ). It is easy to see
from the definitions that if ' 2 Out.FN / is not fully irreducible then some positive
power of ' fixes a vertex of FFN , so that ' acts on FFN with bounded orbits.

Sabalka and Savchuk proved [29] in 2010 that the edge-splitting complex ESN

is not Gromov-hyperbolic, because it possesses some quasi-flats. Aramayona and
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Souto [1] showed that every automorphism of FSN is induced by some element of
Out.FN /.

In 2011, two significant further advances occurred. First, Bestvina and Feighn [4]
proved that for N � 2 the free splitting complex is Gromov-hyperbolic (as noted
above, for N D 2 this essentially follows from the definition of FF2, so the main
case of the Bestvina–Feighn result is for N � 3). Then Handel and Mosher [16]
proved that for allN � 2 the free splitting complex FSN is also Gromov-hyperbolic.
The two proofs are rather different in nature, although both are quite complicated.
Recently Hilion and Horbez [19] produced another proof of hyperbolicity of FSN ,
using “surgery paths” in the sphere complex model of FSN . Bestvina and Reynolds [6]
and Hamenstädt [15] gave a description of the hyperbolic boundary of FFN . Also,
Bestvina and Feighn [5] and then Sabalka and Savchuk [30] investigated analogs of
subsurface projections in the FSN and FFN contexts.

In the present paper we show how to derive hyperbolicity of the free factor complex
from the Handel–Mosher proof of hyperbolicity of the free splitting complex. This
gives a new proof of the Bestvina–Feighn result [4] about hyperbolicity of FFN .

There is a natural “almost canonical” Lipschitz projection from the free splitting
complex to a free factor complex. Namely, for any free splitting v D A 2 V.FSN /

choose a vertex u of A and put �.v/ WD ŒAu�, whereAu is the vertex group of u in A.
This defines a map (easily seen to be Lipschitz) � W V.FSN / ! V.FFN /. Extend this
map to a graph-map � W FS.1/

N ! FF.1/
N by sending every edge in FSN to a geodesic in

FF.1/
N joining the � -images of the endpoints of that edge. Although the map � is not

quite canonically defined (since it involves choosing a vertex group in a free splitting
A when defining �.A/), it is easy to check that, forN � 3, if � 0 W V.FSN / ! V.FFN /

is another map constructed by the above procedure, then d.�.v/; � 0.v// � 2 for all
v 2 V.FSN /.

We prove:

Theorem 1.1. Let N � 3. Then the free factor complex FFN is Gromov-hyperbolic.
Moreover, there exists a constant C > 0 such that for any two vertices x, y of FSN

and any geodesic Œx; y� in FS.1/
N the path �.Œx; y�/ isC -Hausdorff close to a geodesic

Œ�.x/; �.y/� in FF.1/
N .

To prove Theorem 1.1, we first introduce a new object, called the free bases graph,
and denoted FBN , see Definition 4.2 below. The vertices of FBN are free bases ofFN ,
up to some natural equivalence. Informally, adjacency in FBN corresponds to two free
bases sharing a common element. We then prove (Proposition 4.3) that the natural map
from FBN to FFN is a quasi-isometry. Thus to show that FFN is hyperbolic it suffices
to establish hyperbolicity of FBN . To do the latter we use a hyperbolicity criterion for
graphs (Proposition 2.3 below) due to Bowditch [8]. Roughly, this criterion requires
that there exists a family of paths G D fgx;ygx;y (where x; y 2 VX ) joining x to y
and that there exists a “center”-like mapˆ W V.X/�V.X/�V.X/ ! V.X/, such that
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the pair .G ; ˆ/ satisfies some nice “thin triangle” type properties, see Definition 2.2
below. Using Bowditch’s criterion we obtain Corollary 2.4 saying that if X; Y are
connected graphs, with X hyperbolic and if f W X ! Y is a surjective Lipschitz
graph-map with the property that ifd.f .x/; f .y// is small thenf .Œx; y�/has bounded
diameter, then Y is also hyperbolic. Moreover, in this case f .Œx; y�/ is uniformly
Hausdorff-close to any geodesic Œf .x/; f .y/� in Y . (See also Theorem 3.11 in [25]
and Proposition 3.1 in [9].)

We then construct a surjective Lipschitz map f W FS0
N ! FBN , where FS0

N is
the barycentric subdivision of FSN . The map f restricts to a natural bijection from a
subsetS ofV.FS0

N /, corresponding toN -roses, to the setV.FBN / of vertices of FBN .
Thus we may, by abuse of notation, say thatS D V.FBN / and thatf jS D IdS . In [16]
Handel and Mosher constructed nice pathsgx;y given by “folding sequences” between
arbitrary vertices x and y of FS0

N , and proved that these paths are quasigeodesics in
FS0

N . To apply Corollary 2.4 to the map f W FS0
N ! FBN it turns out to be enough

to show that f .gx;y/ has bounded diameter if x; y 2 S and d.f .x/; f .y// � 1 in
FBN . To do that we analyze the properties of the Handel–Mosher folding sequences
in this specific situation. The construction of gx;y for arbitrary x; y 2 V.FS0

N /

is fairly complicated. However, in our situation, we have x; y 2 S , so that x, y
correspond to free bases of FN . In this case the construction of gx;y becomes much
easier and boils down to using standard Stallings foldings (in the sense of [21], [31])
to get from x to y. Verifying that f .gx;y/ has bounded diameter in FBN , assuming
d.f .x/; f .y// � 1, becomes a much simpler task. Thus we are able to conclude that
FBN is Gromov-hyperbolic, and, moreover, that f .Œx; y�/ is uniformly Hausdorff-
close to any geodesic Œf .x/; f .y/� in FBN . Using the quasi-isometry between FBN

and FFN provided by Proposition 4.3, we then obtain the conclusion of Theorem 1.1.
Moreover, as we note in Remark 6.2, our proof of Theorem 1.1 provides a fairly

explicit description of quasigeodesics joining arbitrary vertices (i.e. free bases) in
FBN in terms of Stallings foldings.
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2. Hyperbolicity criteria for graphs

Convention 2.1. From now on, unless specified otherwise, every connected graphX
will be considered as a geodesic metric space with the simplicial metric (where every
edge has length 1). As in the introduction, we denote the vertex set of X by V.X/.
Also, when talking about a connected simplicial complex Z as a metric space, we
will in fact mean the 1-skeleton Z.1/ of Z endowed with the simplicial metric.

LetX; Y be connected graphs. A graph-map fromX to Y is a continuous function
f W X ! Y such that f .V .X// � V.Y / (so that f takes vertices to vertices), and
such that for every edge e of X f .e/ is an edge-path in Y (where we allow for an
edge-path to be degenerate and to consist of a single vertex). Note that if f W X ! Y

is a graph-map and X 0 is a subgraph of X then f jX 0 W X 0 ! Y is also a graph-map
and f .X 0/ is a subgraph of Y .

We say that a graph-map f W X ! Y is L-Lipschitz (where L � 0) if for every
edge e of X the edge-path f .e/ has simplicial length � L.

We use a characterization of hyperbolicity for a geodesic metric space .X; dX /

that is due to Bowditch [8]. A similar hyperbolicity conditions have been originally
stated by Masur and Minsky (see Theorem 2.3 in [23]). A related statement was also
obtained by Hamenstädt [14].

Definition 2.2 (Thin triangles structure). Let X be a connected graph. Let G D
fgx;y jx; y 2 V.X/g be a family of edge-paths in X such that for any vertices x, y
of X gx;y is a path from x to y in X . Let ˆ W V.X/ � V.X/ � V.X/ ! V.X/ be a
function such that for any a; b; c 2 V.X/,

ˆ.a; b; c/ D ˆ.b; c; a/ D ˆ.c; a; b/:

Assume, for constants B1 and B2 that G and ˆ have the following properties:

(1) For x; y 2 V.X/, the Hausdorff distance between gx;y and gy;x is at mostB2.

(2) For x; y 2 V.X/, gx;y W Œ0; l� ! X , s; t 2 Œ0; l� and a; b 2 V.X/, assume
that

dX .a; g.s// � B1 and dX .b; g.t// � B1:

Then, the Hausdorff distance between ga;b and gx;y jŒs;t� is at most B2.

(3) For any a; b; c 2 V.X/, the vertex ˆ.a; b; c/ is contained in a B2-neighbor-
hood of ga;b .

Then, we say that the pair .G ; ˆ/ is a .B1; B2/-thin triangles structure on X .

The following result is a slightly restated special case of Proposition 3.1 in [8].

Proposition 2.3 (Bowditch). Let X be a connected graph. For every B1 > 0 and
B2 > 0, there is ı > 0 and H > 0 so that if .G ; ˆ/ is a .B1; B2/-thin trian-
gles structure on X then X is ı-hyperbolic. Moreover, every path gx;y in G is
H -Hausdorff-close to any geodesic segment Œx; y�.
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Corollary 2.4. Let X and Y be connected graphs and assume that X is ı0-Gromov-
hyperbolic. Let f W X ! Y be a L-Lipschitz graph-map and f .V .X// D V.Y /.
Suppose there are integers M1 > 0 and M2 > 0 so that, for x; y 2 V.X/, if
dY .f .x/; f .y// � M1 then diamY f .Œx; y�/ � M2.

Then, there exists ı1 > 0 such that Y is ı1-hyperbolic. Moreover, there exists
H > 0 such that for any vertices x, y of X the path f .Œx; y�/ isH -Hausdorff close
to any geodesic Œf .x/; f .y/� in Y .

Proof. For every pair of vertices a; b 2 X , let ga;b be any geodesic segment Œa; b�
and let G be the set of all these paths. Also, for any vertices a, b, c of X let

ˆ.a; b; c/ D ˆ.b; c; a/ D ˆ.c; a; b/

be any vertex of X that is at most ı0 away from each of Œa; b�; Œb; c�; Œa; c�. The
hyperbolicity of X implies that .G ; ˆ/ forms a .b1; b2/-thin triangles structure on X
for some b1 and b2 depending on ı0. We now push this structure .G ; ˆ/ forward via
the map f .

For any vertex y of Y choose a vertex vy of X such that f .vy/ D y.
For any vertices y; z 2 Y choose a geodesic gvy ;vz

from vy to vz in X (note
that such a geodesic is generally not unique) and let g0

y;z WD f .gvy ;vz
/. Then let

G 0 D fg0
y;zjy; z 2 V.Y /g. Now, for any vertices w; y; z 2 Y put

ˆ0.w; y; z/ WD f .ˆ.vw ; vy ; vz//:

We claim that, the pair .G 0; ˆ0/ is a .B1; B2/-thin triangles structure for Y for some
B1 and B2. The conditions (1) and (3) of Definition 2.2 are satisfied as long as
B2 � Lb2 since f is L-Lipschitz. Thus we only need to verify that condition (2) of
Definition 2.2 holds for .G 0; ˆ0/.

Lety, z be vertices ofY , vy , vz be the associated vertices inX , gvy ;vz
W Œ0; l� ! X

be the path in G connecting vx to vy and g0
y;z W Œ0; l 0� ! Y be the f -image of gvy ;vz

.
In the interest of brevity, we denote these paths simply by g and g0.

Let B1 D M1 and let, a; b 2 Y and s0; t 0 2 Œ0; l 0� be such that

dY .a; g
0.s0// � B1 and dY .b; g

0.t 0// � B1:

We need to bound the Hausdorff distance between g0
a;b

D f .gva;vb
/ and g0jŒs0;t 0�.

Let s; t 2 Œ0; l� be such that fg.s/ D g0.s0/ and fg.t/ D g0.t 0/. Let u be a vertex
of g0

a;b
. From hyperbolicity, we have vu is contained in a 2ı0-neighborhood of the

union
gjŒs;t� [ Œg.s/; va� [ Œg.t/; vb�:

Thus u is .2L ı0/-close to the union

g0jŒs0;t 0� [ f .Œg.s/; va�/ [ f .Œg.t/; vb�/:



398 I. Kapovich and K. Rafi

But the dY -diameters of f .Œg.s/; va�/ f .Œg.t/; vb�/ are less than M2. Hence, u
is in .2L ı0 C M2/-neighborhood of g0jŒs0;t 0�. Similarly, g0jŒs0;t 0� is in the same
size neighborhood of g0

a;b
. The condition (2) of Definition 2.2 holds for B2 D

.2L ı0 CM2/.
Therefore, by Proposition 2.3, the graph Y is ı1-hyperbolic, and, moreover, for

any two vertices y, z of Y the path g0
y;z D f .gvy ;vz

/ is H 0-Hausdorff close to Œy; z�
for some constant H 0 � 0 independent of y, z. Since gvy ;vz

was chosen to be a
geodesic from vy to vz in X and any two such geodesics are ı0-Hausdorff close, by
increasing the constant H 0 we also get that for any geodesic Œy; z� from y to z in
Y and any geodesic Œvy ; vz� from vy to vz in X the paths Œy; z� and f .Œvy ; vz�/ are
H 0-Hausdorff close in Y .

Now let y, z be any vertices of Y and let v0
y , v0

z be arbitrary vertices of X such
that f .v0

y/ D y and f .v0
z/ D z. A geodesic Œv0

y ; v
0
z� in X is contained in the 2ı0-

neighborhood of Œv0
y ; vy � [ Œvy ; vz� [ Œvz; v

0
z�. Since f .vy/ D f .v0

y/ D y and
f .vz/ D f .v0

z/ D z, the assumptions on f imply that f .Œv0
y ; vy �/ is contained in

the M2-ball around y and f .Œvz; v
0
z�/ is contained in the M2-ball around z in Y .

Moreover, we have already shown that f .Œvy ; vz�/ is H 0-Hausdorff close to Œy; z�.
Therefore f .Œv0

y ; v
0
z�/ is contained in theH -neighborhood of Œy; z� D Œf .v0

y/; f .y
0
z/�

withH D 2Lı0 CM2 CH 0. A similar argument shows that Œy; z� D Œf .v0
y/; f .y

0
z/�

is contained in the H -neighborhood of f .Œv0
y ; v

0
z�/. Thus Œy; z� D Œf .v0

y/; f .v
0
z/�

and f .Œv0
y ; v

0
z�/ are H -Hausdorff close, as required.

It is also possible to derive Corollary 2.4 using Proposition 3.1 from a new paper of
Bowditch (December 2012, [9]) instead of Bowditch’s hyperbolicity criterion from
[8]. Proposition 3.1 of [9] gives a strengthened form of Theorem 3.11 of Masur–
Schleimer [25]. Theorem 3.11 of [25] is sufficient to conclude that the graph Y in
Corollary 2.4 is Gromov-hyperbolic; however, the existence of the constant H as in
the conclusion of Corollary 2.4 requires Proposition 3.1 of [9].

Proposition 2.5. For any positive integers ı0, L, M and D there exist ı1 > 0 and
H > 0 so that the following holds.

Let X , Y be connected graphs, such that X is ı0-hyperbolic. Let f W X ! Y be
a L-Lipschitz graph map for some L � 0. Let S � V.X/ be such that the following
holds.

(1) We have f .S/ D V.Y /.

(2) The set S isD-dense in X for someD > 0.

(3) For x; y 2 S , if d.f .x/; f .y// � 1 then for any geodesic Œx; y� inX we have

diamY .f .Œx; y�// � M:

Then Y is ı1-hyperbolic and, for any x; y 2 V.X/ and any geodesic Œx; y� in X , the
path f .Œx; y�/ isH -Hausdorff close to any geodesic Œf .x/; f .y/� in Y .
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Proof. First we show that, for every m1 > 0, there is m2 > 0 so that whenever
x; y 2 S satisfy dY .f .x/; f .y// � m1 then diamY .f .Œx; y�// � m2. Indeed let
x; y 2 S be as above and consider a geodesic path Œf .x/; f .y/� in Y . Let

f .x/ D z0; z1; : : : ; zt D f .y/; t < m1;

be the sequence of consecutive vertices on Œf .x/; f .y/�. Let x0 D x, xt D y and for
1 � i � t � 1 let xi 2 S be such that f .xi / D zi . Such xi exist since by assumption
f .S/ D V.Y /. We have diamY f .Œxi ; xiC1�/ � M . By hyperbolicity, the geodesic
Œx; y� is contained in the .m1ı0/-neighborhood of the union

t�1[
iD0

Œxi ; xiC1�:

Since f is L-Lipschitz, f .Œx; y�/ is contained in the .Lm1ı0/-neighborhood of

t�1[
iD0

f
�
Œxi ; xiC1�

�
:

But each f .Œxi ; xiC1�/ has diameter � M . Therefore, f .Œx; y�/ has a diameter of at
most m2 D .m1M C 2Lm1ı0/.

Now let M1 � 0 and x; y 2 V.X/ be arbitrary vertices with dY .f .x/; f .y// �
M1. SinceS isD-dense inX , there exist x0; y0 2 S such that d.x; x0/; d.y; y0/ � D.
The fact that f isL-Lipschitz implies that d.f .x0/; f .y0// � M1C2DL. Therefore,
by the above claim, it follows that the

diamY f .Œx
0; y0�/ � m2.M1 C 2DL/:

Since X is ı0-hyperbolic and d.x; x0/; d.y; y0/ � D, we have that Œx; y� and Œx0; y0�
are .2ıC2D/-Hausdorff close. Again, using that f isL-Lipschitz, we conclude that
f .Œx; y�/ has a diameter of at most

M2 D m2.M1 C 2DL/C 4L.2ı0 C 2D/:

The assumption of Corollary 2.4 are now satisfied for constants ı0, L, M1 and M2.
Proposition 2.5 now follows from Corollary 2.4.

Proposition 2.5 easily implies the well-known fact that “coning-off” or “electri-
fying” a family of uniformly quasiconvex subsets in a hyperbolic space produces a
hyperbolic space. Various versions of this statement have multiple appearances in the
literature; see, for example, Lemma 4.5 and Proposition 4.6 in [13], Proposition 7.12
in [7], Lemma 2.3 in [28], Theorem 3.4 in [12], etc. Maher and Schleimer [22] appear
to be the first to explicitly note that after “electrifying” a family of uniformly quasi-
convex subsets in a hyperbolic space, not only is the resulting space again hyperbolic,
but the image of a geodesic is a reparameterized quasigeodesic.

We give a version of the “coning-off” statement here phrased in the context of
graphs with simplicial metrics.
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Proposition 2.6. Let X be a connected graph with simplicial metric dX such that
.X; dX / is ı0-hyperbolic. Let C > 0 and .Xj /j 2J be a family of subgraphs of X
such that eachXj is a C -quasiconvex subset ofX . Let Y be the graph obtained from
X by adding to X the new edges ex;y;j with endpoints x, y whenever j 2 J and x,
y are vertices of Xj (thus X is a subgraph of Y ). Let dY be the simplicial metric
on Y .

Then Y is ı1-hyperbolic for some constant ı1 > 0 depending only on C and ı0.
Moreover there existsH D H.C; ı0/ > 0 such that whenever x; y 2 V.X/, Œx; y�X
is a dX -geodesic from x to y inX and Œx; y�Y is a dY -geodesic from x to y in Y then
Œx; y�X and Œx; y�Y areH -Hausdorff close in .Y; dY /.

Proof. Let f W X ! Y be the inclusion map and put S D V.X/. We claim that the
conditions of Proposition 2.5 are satisfied.

By construction V.X/ D V.Y /, so f .S/ D V.Y /. Also, the map f is ob-
viously 1-Lipschitz. Suppose now that x; y 2 V.X/ are such that dY .x; y/ � 1.
If dY .x; y/ < 1 then dY .x; y/ D 0, so that x D y. In this case it is obvi-
ous that condition (3) of Proposition 2.5 holds for f .Œx; y�X /. Suppose now that
dY .x; y/ D 1. Thus there exists an edge e in Y with endpoints x, y. If e is an
edge of X then dX .x; y/ D 1 and it is again obvious that condition (3) of Proposi-
tion 2.5 holds for f .Œx; y�X /. Suppose now that e D ex;y;j for some j 2 J . Thus
x; y 2 V.Xj /. Since Xj is C -quasiconvex in X , we see that for any point u on
Œx; y�X there exists a vertex z of Xj with dX .u; z/ � C . Hence dY .u; z/ � C as
well. We have dY .x; z/ � 1 and dY .z; y/ � 1 since x; y; z are vertices ofXj . Hence
dY .f .u/; x/ D dY .u; x/ � C C 1. Thus f .Œx; y�X / is contained in the dY -ball of
radius C C 1 centered at x in .Y; dY /, and again condition (3) of Proposition 2.5
holds.

Thus Proposition 2.5 applies and the conclusion of Proposition 2.6 follows.

Note that the assumptions of Proposition 2.6 do not require the family .Xj /j 2J

to be “sufficiently separated”. Such a requirement is present in many versions of
Proposition 2.6 available in the literature, although this assumption is not in fact
necessary and, in particular, Proposition 7.12 in [7] does not impose the “sufficiently
separated” requirement. We have derived Proposition 2.6 from Proposition 2.5, which
in turn was a consequence of Corollary 2.4. A close comparison of these statements
show that the converse implication does not work, and that Corollary 2.4 is a more
general statement than Proposition 2.6.

3. Free factor complex and free splitting complex

Definition 3.1 (Free factor complex). Let FN be a free group of finite rank N � 3.
The free factor complex FFN of FN is a simplicial complex defined as follows.

The set of vertices V.FFN / of FFN is defined as the set of all FN -conjugacy classes
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ŒA� of proper free factors A of FN . Two distinct vertices ŒA� and ŒB� of FFN are
joined by an edge whenever there exist proper free factors A;B of FN representing
ŒA� and ŒB� respectively, such that either A � B or B � A.

More generally, for k � 1, a collection of k C 1 distinct vertices ŒA0�; : : : ; ŒAk�

of FFN spans a k-simplex in FFN if, up to a possible re-ordering of these vertices
there exist representatives Ai of ŒAi � such that A0 � A1 � � � � � Ak .

There is a canonical action of Out.FN / on FFN by simplicial automorphisms: If

� D fŒA0�; : : : ; ŒAk�g

is a k simplex and ' 2 Out.FN /, then

'.�/ WD fŒ'.A0/�; : : : ; Œ'.Ak/�g:

It is not hard to check that forN � 3 the complex FFN is connected, has dimension
N � 2 and that FFN =Out.FN / is compact.

Definition 3.2 (Free splitting complex). Let FN be a free group of finite rankN � 3.
The free splitting complex FSN is a simplicial complex defined as follows. The

vertex set V.FSN / consists of equivalence classes of splittings FN D �1.A/, where
A is a graph of groups with a single topological edge e (possibly a loop edge) and the
trivial edge group such that the action of FN on the Bass–Serre tree TA is minimal
(i.e. such that if e is a non-loop edge then both vertex groups in A are nontrivial).
Two such splittings FN D �1.A/ and FN D �1.B/ are equivalent if there exists an
FN -equivariant isometry between TA and TB. We denote the equivalence class of a
splitting FN D �1.A/ by ŒA�.

The edges in FSN correspond to two splittings admitting a common refinement.
Thus two distinct vertices ŒA� and ŒB� of FSN are joined by an edge whenever there
exists a splitting FN D �1.D/ such that the graph of groups D has exactly two
topological edges, both with trivial edge groups, and such that collapsing one of
these edges produces a splitting of FN representing ŒA� and collapsing the other edge
produces a splitting representing ŒB�.

More generally, for k � 1 a collection of kC 1 distinct vertices ŒA0�; : : : ; ŒAk� of
FSN spans a k-simplex in FSN whenever there exists a splitting FN D �1.D/ such
that the graph of groups D has the following properties:

(a) The underlying graph of D has exactly k C 1 topological edges, e0; : : : ; ek .

(b) The edge group of each ei is trivial.

(c) For each i D 0; : : : ; k collapsing all edges except for ei in D produces a
splitting of FN representing ŒAi �.

The complex FSN comes equipped with a natural action of Out.FN / by simplicial
automorphisms.
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Again, it is not hard to check that forN � 3 the complex FSN is finite-dimensional,
connected and that the quotient FSN =FN is compact.

We denote the barycentric subdivision of FSN by FS0
N .

Definition 3.3 (Marking). LetN � 2. Recall that a marking onFN is an isomorphism
˛ W FN ! �1.�; v/ where � is a finite connected graph without any degree-one and
degree-two vertices and v is a vertex of � . By abuse of notation, if ˛ is specified, we
will often refer to � as a marking.

Two markings ˛ W FN ! �1.�; v/ and ˛0 W FN ! �1.�
0; v0/ are said to be equiv-

alent, if there exists an FN -equivariant isometry A.�; v/ ! B.� 0; v0/. The equivalence
class of a marking ˛ W FN ! �1.�; v/ is denoted by Œ˛� or, if ˛ is already specified,
just Œ��.

Convention 3.4 (Barycenters). Note that for N � 3 any marking ˛ W FN ! �1.�/

corresponds to a simplex�˛ in FSN , as follows. We can view � as a graph of groups
by assigning trivial groups to all the vertices and edges of � . Then the vertices of�˛

correspond to the (topological) edges of � and come from choosing an edge e of �
and collapsing all the other edges of � . It is easy to see that �˛ depends only on the
equivalence class Œ˛� of the marking ˛.

We denote the vertex of FS0
N given by the barycenter of�˛ by z.˛/ or, if it is more

convenient, by z.�/. Note that if Œ˛� D Œˇ� then z.˛/ D z.ˇ/. We will sometimes
refer to a marking � as a vertex of FS0

N ; when that happens, we always mean the
vertex z.�/.

4. The free bases graph

If � is a graph (i.e. a one-dimensional CW-complex), then any topological edge (i.e.
a closed 1-cell) of � is homeomorphic to either Œ0; 1� or to S1 and thus admits exactly
two orientations. An oriented edge of � is a topological edge together with a choice
of an orientation on this edge. If e is an oriented edge of � , we denote by e�1 the
oriented edge obtained by changing the orientation on e to the opposite one. Note
that .e�1/�1 D e for any oriented edge e. For an oriented edge e we denote the initial
vertex of e by o.e/ and the terminal vertex of e by t .e/. Then o.e�1/ D t .e/ and
t .e�1/ D o.e/. We will denote by E� the set of oriented edges of � and by V � the
set of vertices of � .

Let N � 2. We denote by WN the graph with a single vertex v0 and N distinct
oriented loop-edges e1; : : : ; eN .

Definition 4.1 (A-rose). Let A D fa1; : : : ; aN g be a free basis of FN . Define the
A-roseRA as the marking ˛A W FN ! �1.WN ; v0/where ˛A sends ai to the loop at
v0 in � corresponding to ei , traversed in the direction given by the orientation of ei .
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Definition 4.2 (Free bases graph). Let N � 3. The free bases graph FBN of FN is
a simple graph defined as follows. The vertex set V.FBN / consists of equivalence
classes free bases A ofFN . Two free bases A and B ofFN are considered equivalent
if the Cayley graphs TA and TB of FN with respect to A and B are FN -equivariantly
isometric. We denote the equivalence class of a free basis A of FN by ŒA�.

Note that for free bases A D fa1; : : : ; aN g and B D fb1; : : : ; bN g of FN we
have ŒA� D ŒB� if and only if there exist a permutation � 2 SN , an element g 2 FN

and numbers "i 2 f1;�1g (where i D 1; : : : ; N ) such that

bi D g�1a
"i

�.i/
g

for i D 1; : : : ; N . Thus ŒA� D ŒB� if and only if the rosesRA andRB are equivalent
as markings. Note also that for any free basis A of FN and any g 2 FN we have
Œg�1Ag� D ŒA�.

The edges in FBN are defined as follows. Let ŒA� and ŒB� be two distinct vertices
of FBN . These vertices are adjacent in FBN whenever there exists a 2 A such that
some element b 2 B is conjugate to a or a�1. Thus two distinct vertices v1, v2 of
FBN are adjacent if and only if there exist free bases A and B representing v1, v2

accordingly such that A \ B ¤ ;.
The graph FBN comes equipped with a natural Out.FN / action by simplicial

automorphisms.

Proposition 4.3. Let N � 3. Then the following holds.

(1) The graph FBN is connected.

(2) For each vertex v D ŒA� of FBN choose some av 2 A. Consider the map

h W V.FBN / ! V.FFN /

defined as h.v/ D Œhavi� for every vertex v of FBN . Extend h to a graph-map

h W FBN ! FFN

by sending every edge e of FBN with endpoints v; v0 to a geodesic path
Œh.v/; h.v0/� in FF.1/

N . Then:

(a) The map h is a quasi-isometry. In particular, the complexes FBN and FFN

are quasi-isometric.

(b) The set h.V .FBN // is 3-dense in FF.1/
N

Proof. First we will show that h is 4-Lipschitz. Since h W FBN ! FF.1/
N is a graph-

map, it suffices to check that for any two adjacent vertices v; v0 of FBB we have
dFFN

.h.v/; h.v0// � 4.
Let v D ŒA� and v0 D ŒB� be two adjacent vertices of FBN . Hence we may choose

free bases A representing v and B representing v0 such that A \ B ¤ ;. Up to re-
ordering these bases, we may assume that A D fa1; : : : ; aN g, B D fb1; : : : ; bN g
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and that a1 D b1. Then av D ai and av0 D bj for some 1 � i; j � N and thus, by
definition of h, we have h.v/ D Œhai i�, h.v0/ D Œhbj i�.

We will assume that i > 1 and j > 1 as the cases where i D 1 or j D 1 are
easier. Then in FFN we have

dFFN

�
Œhai i�; Œhai ; a1i�

�
D dFFN

�
Œhai ; a1i�; Œha1i�

�
D 1

and
dFFN

�
Œhbj i�; Œhbj ; b1i�

�
D dFFN

�
Œhbj ; b1i�; Œhb1i�

�
D 1:

Since a1 D b1, by the triangle inequality we conclude that

dFFN
.h.v/; h.v0// D dFFN

.Œhai i�; Œhbj i�/ � 4:

Thus the map h is 4-Lipschitz, as claimed.
To show that h is a quasi-isometry we will construct a “quasi-inverse”, that is a

Lipschitz map q W FF.1/
N ! FBN such that there exists C � 0 with the property that

for every vertex v of FBN , dFBN
.v; q.h.v/// � C and that for every vertex u of

FFN , dFFN
.u; h.q.u/// � C .

We define q on V.FFN / and then extend q to edges in a natural way, by sending
every edge to a geodesic joining the images of its end-vertices.

Let u D ŒK� be an arbitrary vertex of FFN (so that K is a proper free factor of
FN ). We choose a free basis BK of K and then a free basis AK of FN such that
BK � AK . Put q.u/ D ŒAK �.

First we check that q is Lipschitz. Let u D ŒK� and u0 D ŒK 0� be adjacent vertices
of FFN , whereK,K 0 are proper free factors of FN . We may assume thatK � K 0 is
a proper free factor of K 0. Since K 0 ¤ FN , there exists t 2 AK0 n BK0 . Since K is
a free factor of K 0, we can find a free basis A of FN such that t 2 A and BK � A.
Since t 2 AK0 \ A, we have d.ŒAK0 �; ŒA�/ � 1 in FBN . Since BK 	 A \ AK , it
follows that d.ŒAK �; ŒA�/ � 1 in FBN . Therefore

dFBN

�
q.u/; q.u0/

� D dFBN

�
ŒAK �; ŒAK0 �

� � 2:

Hence q is 2-Lipschitz.
For a vertex v D ŒA� of FBN let us now estimate dFBN

.v; q.h.v///. We have
h.v/ D Œhavi� for some av 2 A. The group K D havi is infinite cyclic (that is free
of rank 1). Therefore this group has only two possible free bases, favg and fa�1

v g.
We will assume that BK D favg as the case BK D fa�1

v g is similar. Then, by
definition, AK is a free basis of FN containing av and q.h.v// D q.ŒK�/ D ŒAK �.
Thus av 2 A \ AK and hence dFBN

.v; q.h.v/// � 1 in FBN .
Now let u D ŒK� be an arbitrary vertex of FFN . We need to estimate the distance

dFFN
.u; h.q.u///. By definition, v WD h.u/ D ŒAK � where AK is a free basis of

FN containing as a (proper) subset a free basis BK of K. Then av 2 AK and
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h.q.u// D h.v/ D Œhavi�. Choose an element b 2 BK . It may happen that b D av ,
but in any case K 0 WD hb; avi is a proper free factor of FN . Then

dFFN

�
ŒK�; Œhbi�� � 1; dFFN

�
Œhbi�; ŒK 0�

� � 1 and dFFN

�
ŒK 0�; Œhavi�� � 1:

Therefore
dFFN

�
u; h.q.u/

� D dFFN

�
ŒK�; Œhavi�� � 3:

Thus indeed q is a quasi-inverse for h, and hence h is a quasi-isometry, as required.
We next show that h.V .FBN // is 3-dense in FF.1/

N . Indeed, let K � FN be an
arbitrary proper free factor of FN . Let a1; : : : ; am (where 1 � m < N ) be a free
basis of K and choose amC1 : : : ; aN such that A D fa1; : : : ; aN g is a free basis of
FN . Then h.ŒA�/ D Œhai i� for some 1 � i � N . In FFN we have

dFFN

�
ŒK�; Œha1i�� � 1;

dFFN

�
Œha1i�; Œha1; ai i�

� � 1

and

dFFN

�
Œha1; ai i�; Œhai i�

� � 1:

Since h.ŒA�/ D Œhai i�, it follows that dFFN
.ŒK�; h.v// � 3. Thus indeed h.V .FBN //

is 3-dense in FF.1/
N , as claimed.

Definition 4.4 (Free basis defined by a marking). If ˛ W FN ! �1.�; v/ is a marking,
and T � � is a maximal tree in � , there is a naturally associated free basis B.˛; T /

(which we will also sometimes denote B.�; T /) of FN . Namely, in this case � � T
consists of N topological edges. Choose oriented edges e1; : : : ; eN 2 E.� � T / so
that E.� � T / D fe˙1

1 ; : : : ; e˙1
N g. For j D 1; : : : ; N put

	j D Œv; o.ej /�T ej Œt .ej /; v�T ;

where Œu; u0�T denotes the (unique) geodesic in the tree T from u to u0 for u; u0 2
V.�/ D V.T /.

Then 	1; : : : ; 	N is a free basis of �1.�; v/. Put

B.˛; T / WD f˛�1.	1/; : : : ; ˛
�1.	1/g:

Remark 4.5. One can show that there is a constant C D C.N/ > 0 such that if
˛ W FN ! �1.�; v/ and ˛0 W FN ! �1.�

0; v0/ are equivalent markings and T � � ,
T 0 � � 0 are maximal trees, then

dFBN

�
ŒB.˛; T /�; ŒB.˛0; T 0/�

� � C:

This can be shown, for example, using the quasi-isometry q W FBN ! FFN con-
structed in Proposition 4.3. Thus the definitions imply that if T is a maximal tree in �
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and e is an edge of � nT , then q.ŒB.˛; T /�/ is a bounded distance away in FFN from
the free factor of FN corresponding to any of the vertex groups in the graph of groups
�e obtained by collapsing � n e. On the other hand, for any two edges e1; e2 of �
the free splittings �e1

and �e2
are adjacent vertices of FSN and therefore (e.g. using

the Lipschitz map � W FSN ! FFN from the Introduction), any two vertex groupsA1

and A2 from these splittings are bounded distance away in FFN .

5. A-graphs and Stallings folds

We briefly discuss here the language and machinery of Stallings foldings, introduced
by Stallings in a seminal paper [31]. We refer the reader to [21] for detailed back-
ground on the topic.

If� is a finite connected non-contractible graph, we denote by Core.�/ the unique
minimal subgraph of � such that the inclusion Core.�/ � � is a homotopy equiva-
lence. Thus Core.�/ carries �1.�/ and we can obtain � from Core.�/ by attaching
finitely many trees.

Definition 5.1 (A-graph). Let A be a free basis ofFN and letRA be the corresponding
rose marking. An A-graph is a graph � with a labelling function 
 W E� ! A˙1

(whereE� is the set of oriented edges of�) such that for every oriented edge e 2 E�
we have 
.e�1/ D 
.e/�1.

Note that there is an obvious way to view the rose RA as an A-graph. Any A-
graph � comes equipped with a canonical label-preserving graph-map p W � ! RA

which sends all vertices of � to the (unique) vertex of RA and which sends every
oriented edge of � to the oriented edge of the rose RA with the same label. We call
p the natural projection.

Let � be a finite connected A-graph containing at least one vertex of degree � 3.
Following Handel–Mosher [16], we call vertices of � that have degree � 3 natural
vertices. The complement of the set of natural vertices in � consists of a disjoint
union of intervals whose closures, again following [16], we call natural edges.

Recall that in the definition of a marking on FN the graph appearing in that
definition had no degree-one and degree-two vertices.

Remark 5.2. Suppose that � is a connected A-graph such that the natural projection
� ! RA is a homotopy equivalence. Then the projection p W Core.�/ ! RA is a
homotopy equivalence.

Then, via using the homotopy inverse of p and making inverse subdivisions
in Core.�/ to erase all the degree-2 vertices, we get an actual marking of FN ,
˛ W FN ! �1.x�/. Here x� is the graph obtained from Core.�/ by doing inverse
edge-subdivisions to erase all degree-two vertices. In this case we call ˛ the marking
associated with � and denote ˛ by ˛� , or, sometimes just by x� .
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Definition 5.3 (Folded graphs and Stallings folds). Let � be an A-graph. We say
that � is folded if there does not exist a vertex v of � and two distinct oriented edges
e1; e2 with o.e1/ D o.e2/ D v such that 
.e1/ D 
.e2/. Otherwise we say that � is
non-folded.

Let � be a non-folded A-graph, let e1; e2 be two distinct oriented edges of �
such that o.e1/ D o.e2/ D v 2 V.�/ and such that 
.e1/ D 
.e2/ D a 2 A˙1.
Construct an A-graph � 0 by identifying the edges e1 and e2 into a single edge e with
label 
.e/ D a. We say that � 0 is obtained from � by a Stallings fold. In this case
there is also a natural label-preserving fold map f W � ! � 0. It is easy to see that
the fold map f is a homotopy equivalence if and only if t .e1/ ¤ t .e2/ in � . If
t .e1/ ¤ t .e2/ in � , we say that f is a type-I Stallings fold. If t .e1/ D t .e2/ in � , we
say that f is a type-II Stallings fold.

Note that if � is a finite connected A-graph such that the natural projection
� ! RA is a homotopy equivalence, and if � 0 is obtained from � by a Stallings fold
f , then f is necessarily a type-I fold, and hence the natural projection � 0 ! RA is
again a homotopy equivalence.

Definition 5.4 (Maximal fold). Let � be a non-folded finite connected A-graph, let
v 2 VA be a natural vertex, let e1; e2 be two distinct oriented edges of � such that
o.e1/ D o.e2/ D v and such that 
.e1/ D 
.e2/ D a 2 A˙1. Let �e1 and �e2 be the
natural edges in � that begin with e1, e2 accordingly. Let z1; z2 be maximal initial
segments of �e1 and �e2 such that the label 
.z1/ is graphically equal, as a word over
A˙1, to the label 
.z2/. Thus z1 starts with e1 and z2 starts with e2. Let � 0 be
obtained from � by a chain of Stallings folds that fold z1 and z2 together. We say that
� 0 is obtained from � by a maximal fold. Being a composition of several Stallings
folds, a maximal fold also comes equipped with a fold map f W � ! � 0.

Remark 5.5. Let� be a connected A-graph such that� D Core.�/ and such that the
natural projection p W � ! RA is a homotopy equivalence. Let ˛ W FN ! �1.�; v/

be an associated marking. Let T � � be a maximal tree.
Recall that according to Definition 4.4, we have an associated free basis B.�; T /

of FN . In this case B.�; T / can be described more explicitly as follows. Choose
oriented edges e1; : : : ; eN 2 E.� �T / so thatE.� �T / D fe˙1

1 ; : : : ; e˙1
N g. Letwj

be the label (i.e. a word over A) of the path Œv; o.ej /�T ej Œt .ej /; v�T , j D 1; : : : ; N .
Then B.�; T / D fw1; : : : ; wN g.

We need the following technical notion which is a variant of the notion of a
foldable map from the paper of Handel–Mosher [16].

Definition 5.6 (Foldable maps). Let� be a finite connected A-graph such that the nat-
ural projection p W � ! RA is a homotopy equivalence and such that � D Core.�/.

We say that the natural projection p W � ! RA is foldable if the following con-
ditions hold:
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(1) If v is a vertex of degree 2 in � and e1, e2 are the two distinct edges in � with
o.e1/ D o.e2/ D v then 
.e1/ ¤ 
.e2/.

(2) If deg.v/ � 3 in � then there exist three (oriented) edges e1, e2, e3 in � such
that o.e1/ D o.e2/ D o.e3/ D v and such that 
.e1/, 
.e2/, 
.e3/ are three
distinct elements in A˙1.

If the natural projection p W � ! RA is foldable, we will also sometimes say that
the A-graph � is foldable.

Remark 5.7. Let� be a foldable A-graph and let� 0 be obtained from� by a maximal
fold.

(1) One can check that � 0 is again foldable. Note, however, that a single Stallings
fold on a foldable A-graph may introduce a vertex of degree three where condition
(2) of Definition 5.6 fails, so that the resulting graph is not foldable. Performing
maximal folds instead of single Stallings folds avoids this problem.

(2) Lemma 2.5 in [16] implies that

dFS0

N

�
z.x�/; z.S� 0/

� � 2:

Recall that the marking x� was defined in Remark 5.2.

(3)As noted above, in [16] Handel and Mosher introduce the notion of a “foldable”
FN -equivariant map between trees corresponding to arbitrary minimal splittings of
FN as the fundamental group of a finite graph of groups with trivial edge groups. They
also prove the existence of such “foldable maps” in that setting. The general definition
and construction of foldable maps are fairly complicated, but in the context of A-
graphs corresponding to markings on FN they become much easier. In particular,
we will only need the following basic fact that follows directly from comparing
Definition 5.6 with the Handel–Mosher definition of a foldable map:

Let � be a finite connected A-graph such that the natural projection p W � ! RA

is a homotopy equivalence and such that � D Core.�/. Suppose that p is foldable
in the sense of Definition 5.6 above. Then there exists a foldable (in the sense of
Handel–Mosher) map z� ! zRA.

Handel and Mosher use foldable maps as a starting point in constructing folding
paths between vertices of FS0

N , and we will need the above fact in the proof of the
main result in Section 6.

6. Proof of the main result

Before giving a proof of the main result, we illustrate the relationship and the maps
between FSN , FS0

N , FFN and FBN in the following diagram, provided by the referee:
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q.i. q.i.

FS0
N

FBN
Œ.a1; a2; : : : ; aN

FSN FFN Œhai i

f

ŒA 7!

 h

z.RA/ Œ

h

A

!

u 7! A.u/

Figure 1. A diagram showing the maps between the various curve complex analogs considered
in this paper. Here FN D A� represents an HNN-extension splitting of FN with the trivial
associated subgroups and with the base group A. The map  is the quasi-isometry between
FS0

N and FSN given by the inclusion map.

Theorem 6.1. Let N � 3. Then the free factor complex FFN is Gromov-hyperbolic.
Moreover, there exists a constantH > 0 such that for any two vertices x, y of FSN

and any geodesic Œx; y� in FS.1/
N the path �.Œx; y�/ isH -Hausdorff close to a geodesic

Œ�.x/; �.y/� in FF.1/
N .

Proof. Recall that FS0
N is the barycentric subdivision of the free splitting graph FSN ,

so that the inclusion map FSN � FS0
N is a quasi-isometry.

Recall also that for any free basis A ofFN the roseRA defines an .N �1/-simplex
in FSN (via the canonical marking FN ! �1.RA/ sending the elements of A to the
corresponding loop-edges of RA) and that, as in Convention 3.4, z.RA/ 2 V.FS0

N /

is the barycenter of that simplex. Note that by definition, if ŒA� D ŒB� then z.RA/ D
z.RB/. Put

S D fz.RA/ j A is a free basis of FN g:
Thus S � V.FS0

N / and we may think of S as a copy of V.FBN / in V.FS0
N /.

For every x; y 2 S let gx;y be the path from x to y in FS0
N given by the Handel–

Mosher folding line [16]. Recall that, as proved in [16], FS0
N is Gromov-hyperbolic

and gx;y is a re-parameterized uniform quasigeodesic. Hence gx;y is uniformly
Hausdorff close to any geodesic Œx; y� in FS0

N .
Consider the following map f W V.FS0

N / ! V.FBN /. For every vertex u of FS0
N ,

which may be viewed as a splitting of FN as the fundamental group of a graph of
groups with trivial edge-groups, choose an edge e of that splitting, collapse the rest
of u to a single-edge splitting corresponding to u and let A.u/ be a vertex group of
that collapsed splitting. Thus A.u/ is a proper free factor of FN and hence ŒA.u/�
is a vertex of FFN . Then choose a vertex v of FBN with d.h.v/; ŒA.u/�/ � 3 (such
v exists by Proposition 4.3). Put f .u/ WD v. We can make the above choices to
make sure that for every free basis A of FN we have f .z.RA// D ŒA� (note that
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dFFN
.h.ŒA�/; A.z.RA/// � 2). With the above mentioned identification of S and

V.FBN /we may in fact informally think that f jS D IdS . Moreover, if� is a foldable
A-graph (which therefore defines a marking x�) and T � � is a maximal tree, then
we have an associated free basis B.�; T / described in Remark 5.5 above. One can
check that d.f .x�/; ŒB.�; T /�/ � B for some constant B D B.N/ > 0 independent
of A, � , T .

We have defined a map f W V.FS0
N / ! V.FBN /. We then extend this map to a

graph-map f W FS0
N ! FBN by sending an arbitrary edge e of FS0

N with endpoints
u1; u2 to a geodesic edge-path Œf .u1/; f .u2/� in FBN . The graph-map f W FS0

N !
FBN is L-Lipschitz for some L � 0, since � is Lipschitz and the maps V.FS0

N / !
FF.1/

N , given by u 7! ŒA.u/� and u 7! �.u/, are bounded distance away from each
other.

We claim that all the assumptions of Proposition 2.5 are satisfied for the map
f W FS0

N ! FBN and the set S .
Condition (1) of Proposition 2.5 holds, since by assumption f .S/ D V.FBN /.

Also, as noted above, f W FS0
N ! FBN is L-Lipschitz, and it is easy to see that

S is D-dense in FS0
N , for some D > 0. Our task is to verify condition (3) of

Proposition 2.5.
If x0; y0 2 V.FBN / have d.x0; y0/ � 1 then there exist free bases A;B of FN

such that x0 D ŒB�, y0 D ŒA� and such that there exists a 2 A \ B. Without loss
of generality, we may assume that A D fa1; : : : ; aN g, B D fb1; : : : ; bN g and that
a1 D b1 D a. Put x D z.RB/ and y D z.A/, so that f .x/ D x0 and f .y/ D y0.

In [16] Handel–Mosher [16], given any ordered pair of vertices x, y of V.FS0
N /,

construct an edge-path gx;y from x to y in FS0
N , which we will sometimes call

the Handel–Mosher folding path. The general definition of gx;y in [16] is fairly
complicated. However, we only need to use this definition for the case wherex; y 2 S ,
in which case it becomes much simpler, and which we will now describe in greater
detail for the vertices x D z.RB/ and y D z.A/ defined above.

Consider an A-graph �0 which is a wedge of N simple loops at a common base-
vertex v0, where the i -th loop is labeled by the freely reduced word over A that is
equal to bi in FN . Note that the first loop is just a loop-edge labelled by a1, since by
assumption b1 D a1. The natural projectionp W �0 ! RA is a homotopy equivalence
and we also have �0 D Core.�0/. Condition (1) of Definition 5.6 holds for �0 by
construction. However, p W �0 ! RA is not necessarily foldable since Condition (2)
of Definition 5.6 may fail. This happens exactly when there exists " 2 f1;�1g such
that for all i D 2; : : : ; N the freely reduced word over A representing bi begins with
a"

1 and ends with a�"
1 . However, after possibly replacing B by an equivalent free

basis of the form am
1 Ba�m

1 , for the graph �0 defined as above the natural projection
p W �0 ! RA is foldable in the sense of Definition 5.6. Note that conjugation by am

1

fixes the element b1 D a1, so that even after the above modification of B it will still
be true that �0 contains a loop-edge at v0 with label a1.

As noted in Remark 5.7 above, as the initial input for constructing gx;y , Handel
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and Mosher need a “foldable” (in the sense of [16]) FN -equivariant map �RB ! �RA.
Again, as observed in Remark 5.7, such a map exists since we have arranged for the
A-graph �0 to be foldable in the sense of Definition 5.6.

Note that by construction, the marking �0 corresponding to �0 is exactly the
vertex x D z.RB/ of FS0

N .
The remainder of the Handel–Mosher construction of gx;y in this case works as

follows. Sincep W �0 ! RA is a homotopy equivalence, there exists a finite sequence
of A-graphs

�0; �1; : : : �n D RA

where for i D 1; : : : ; n �i is obtained from �i�1 by a maximal fold. Then the
associated markings �i are vertices of FS0

N . As observed in Remark 5.7, we have
d.�i�1; �i / � 2 in FS0

N . Joining each consecutive pair �i�1; �i by a geodesic path
of length � 2 in FS0

N produces the path gx;y from x to y in FS0
N . Note that each

�i has a base-vertex vi which is the image of the base-vertex v0 of �0 under the
sequence of folds that takes �0 to �i .

A crucial feature of the above construction is that every �i will have a loop-edge
(at the base-vertex vi of �i ) with label a1. Since the map f W FS0

N ! FBN is
L-Lipschitz, this implies that f .gx;y/ has diameter bounded by some constant M0

independent of x, y. Indeed, Since �i has a loop-edge at its base-vertex with label
a1, there exists a free basis 	1; : : : ; 	N of �1.�i ; vi / (e.g. coming from a choice of
a maximal tree in �i , as in Definition 4.4 and Remark 5.5) such that 
.	1/ D a1

and such that Bi D f
.	1/; : : : ; 
.	N /g is a free basis of FN . Since a1 2 Bi ,
we have d.ŒBi �; ŒA�/ � 1 in FBN for each i . Unpacking the definition of the map
f we see that d.f .�i�1/; ŒBi �/ � C in FBN for some constant C � 0. Hence
d.f .�i�1/; ŒA�/ � C C1. Recall that gx;y is a quasi-geodesic in a hyperbolic graph
FS0

N and hence gx;y is uniformly Hausdorff-close to a geodesic Œx; y�. Since f is
L-Lipschitz, it follows that f .Œx; y�/ has diameter bounded by some constant M
independent of x, y. Thus condition (3) of Proposition 2.5 holds.

Therefore, by Proposition 2.5, the graph FBN is Gromov-hyperbolic, and, more-
over, for any vertices x, y of FSN , the path f .Œx; y�/ is uniformly Hausdorff-close
to a geodesic Œf .x/; f .y/�.

Recall that in Proposition 4.3 we constructed an explicit quasi-isometryh W FBN !
FFN . Since FBN is hyperbolic, it follows that FFN is Gromov-hyperbolic as well.
Moreover, the map � W FSN ! FFN from the statement of Theorem 1.1, and the map
h B f W FSN ! FFN are bounded distance from each other. This implies that there
exists a constantH > 0 such that for any two vertices x, y of FSN and any geodesic
Œx; y� in FS.1/

N the path �.Œx; y�/ is H -Hausdorff close to a geodesic Œ�.x/; �.y/� in

FF.1/
N .

Remark 6.2. The above proof implies a reasonably explicit description of certain
reparameterized quasigeodesics in FBN between two arbitrary vertices of FBN in
terms of Stallings folds. Let A D fa1; : : : ; aN g and B D fb1; : : : ; bN g be free bases
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of FN . Let �0 be an A-graph corresponding to B constructed in a similar way to
the way �0 was constructed in the above proof. That is, let �0 be a wedge of N
simple loops at a common base-vertex v0, where the i -th loop is labeled by the freely
reduced word over A that is equal to bi inFN . Suppose that�0 is such that the natural
projection p W �0 ! RA is foldable in the sense of Definition 5.6. (Note that this
assumption does not always hold; however, it may always be ensured after replacing
B by an equivalent free basis).

Let �0; �1; : : : ; �n D RA be A-graphs such that for i D 1; : : : ; n �i is obtained
from �i�1 by a maximal fold. Note that each �i has a distinguished base-vertex vi ,
which is the image of the base-vertex v0 of �0 under the foldings transforming �0 to
�i .

For each 1 � i < n choose a maximal subtree Ti in �i . Let Ai D B.�i ; Ti / be
the associated free basis of FN (see Remark 5.5 above for its detailed description).
Put A0 D B and An D A.

It is not hard to check that d.ŒAi �; f .�i // � C in FBN for some constant C D
C.N/ > 0 independent of A, B. Since, as noted in the proof of Theorem 1.1 above,
the sequence �0; : : : ; �n defines a (reparameterized) uniform quasigeodesic in FS0

N ,
it now follows from the proof of Theorem 1.1 that the set fŒA0�; ŒA1�; : : : ; ŒAn�g
is uniformly Hausdorff-close to a geodesic joining ŒB� and ŒA� in FBN . This fact
can also be derived from a careful analysis of the Bestvina–Feighn proof [4] of
hyperbolicity of FFN .
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