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Abstract. For two measured laminations ν+ and ν− that fill up a hy-
perbolizable surface S and for t ∈ (−∞,∞), let Lt be the unique hy-
perbolic surface that minimizes the length function etl(ν+) + e−tl(ν−) on
Teichmüller space. We characterize the curves that are short in Lt and
estimate their lengths. We find that the short curves coincide with the
curves that are short in the surface Gt on the Teichmüller geodesic whose
horizontal and vertical foliations are respectively, etν+ and e−tν−. By de-
riving additional information about the twists of ν+ and ν− around the
short curves, we estimate the Teichmüller distance between Lt and Gt. We
deduce that this distance can be arbitrarily large, but that if S is a once-
punctured torus or four-times-punctured sphere, the distance is bounded
independently of t.

1 Introduction

Suppose that ν+ and ν− are measured laminations which fill up a hyper-
bolizable surface S. The object of this paper is to compare two paths in
the Teichmüller space T (S) of S determined by ν+ and ν−. The first is
the Teichmüller geodesic G = G(ν+, ν−), whose time t Riemann surface
Gt ∈ G supports a quadratic differential qt whose horizontal and vertical
foliations are ν+

t = etν+ and ν−t = e−tν−, respectively [GM]. The sec-
ond is the Kerckhoff line of minima L = L(ν+, ν−) [Ke3]. At time t,
Lt ∈ L is the unique hyperbolic surface that minimizes the length function
l(ν+

t ) + l(ν−t ) = etl(ν+) + e−tl(ν−) on T (S). (Recall that G can be char-
acterized as the locus in T (S) where the product of the extremal lengths
Ext(ν+) Ext(ν−) is minimized [GM].) Lines of minima have many proper-
ties in common with Teichmüller geodesics, see [Ke3], and have been shown
to be closely linked to deforming Fuchsian into quasi-Fuchsian groups by
bending, see [S2].
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We are interested in comparing the two trajectories G and L, in particu-
lar, to see whether or not they remain a bounded distance apart. If both Gt

and Lt are contained in the thick part of T (S), it is relatively easy to show
that the Teichmüller distance between them is uniformly bounded indepen-
dently of t, see Theorem 3.8. A more surprising fact is that, in general,
the sets of short curves on G and L are the same. Writing lGt(α), lLt(α) for
the geodesic lengths of a simple closed curve α in the hyperbolic metrics
on Gt,Lt respectively, we prove
Theorem A (Proposition 7.1 and Corollary 7.9). The set of short curves
on Gt and Lt coincide. More precisely, there exist universal constants
ε1, . . . , ε4 > 0 such that, for each t, lGt(α) < ε1 implies lLt(α) < ε2 and
lLt(α) < ε3 implies lGt(α) < ε4.

Finding combinatorial estimates for the lengths of these short curves
occupies the main part of the paper and leads to a coarse estimate of the
distance between Gt and Lt. It turns out that along both G and L there are
two distinct reasons why a curve α can become short: either the relative
twisting of ν+ and ν− about α is large, or ν+ and ν− have large relative
complexity in S \α (the completion of the surface S minus α), in the sense
that every essential arc or closed curve in S \α must have large intersection
with ν+ or ν−. Our results give sufficient control to construct examples
which show that Gt and Lt may or may not remain a bounded distance
apart.

The estimates for curves which become short along G are based on Rafi
[R1]. For convenience we say a curve is ‘extremely short’ on a given surface
if its hyperbolic length is less than some fixed constant ε0 > 0 defined in
terms of the Margulis constant, see section 2.1. Rafi’s results imply
Theorem B (Theorem 5.10). Suppose that α is extremely short on Gt.
Then 1

lGt(α)
� max

{
Dt(α), logKt(α)

}
.

The terms Dt(α) and Kt(α) correspond respectively to the relative
twisting and large relative complexity mentioned above. More precisely,

Dt(α) = e−2|t−tα|dα(ν+, ν−) ,
where tα is the balance time at which i(α, ν+

t ) = i(α, ν−t ) and dα(ν+, ν−) is
the relative twisting, that is, the difference between the twisting of ν+ and
ν− around α, see section 4.3. The term Kt(α) depends on the (possibly
coincident) thick components Y1, Y2 that are adjacent to α in the thick-thin
decomposition of Gt. Let qt be the area 1 quadratic differential on Gt whose
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horizontal and vertical foliations are respectively ν+
t and ν−t . Associated to

qt is a singular Euclidean metric; we denote the geodesic length of a curve
γ in this metric by lqt(γ), see section 2.6. By definition

Kt(α) = max
{

λY1

lqt(α)
,
λY2

lqt(α)

}
,

where λYi is the length of the shortest non-trivial, non-peripheral simple
closed curve on Yi with respect to the qt-metric, see section 5.3.

One of the main results of this paper is a similar characterization of
curves which become short along L(ν+, ν−). We prove that the hyperbolic
length lLt(α) of a short curve in Lt is estimated as follows:
Theorem C (Theorem 7.13). Suppose that α is extremely short on Lt.
Then 1

lLt(α)
� max

{
Dt(α),

√
Kt(α)

}
.

The main tool in the proof is the well-known derivative formula of Kerck-
hoff [Ke2] and Wolpert [W1] for the variation of length with respect to
Fenchel–Nielsen twist, together with the extension proved by Series [S1] for
variation with respect to the lengths of pants curves.

To estimate the Teichmüller distance between two surfaces that have the
same set of short curves, one uses Minsky’s product region theorem [Mi3].
To apply this, in addition to Theorems B and C, we need to estimate the Te-
ichmüller distance between the hyperbolic thick components of Gt and Lt,
and also the difference between the Fenchel–Nielsen twist coordinates cor-
responding to the short curves in the two surfaces. In Theorem 7.10 and
Corollary 7.11, we show that the Teichmüller distance between the corre-
sponding thick components is bounded. In Theorem 6.2, we estimate the
twist of ν+ and ν− around α at Lt. Combined with the analogous estimate
for Gt proved in [R2], we are able to show that the contribution to the
Teichmüller distance between Gt and Lt from the twisting is dominated by
that from the lengths, leading to
Theorem D (Theorem 7.15). The Teichmüller distance between Gt and
Lt is given by

dT (S)(Gt,Lt) =
1
2

log max
{
lGt(α)
lLt(α)

}
±O(1) ,

where the maximum is taken over all curves α that are short in Gt.

Theorems B, C, and D enable us to construct the various examples
alluded to above. Because Kt(α) can become arbitrarily large while Dt(α)
remains bounded, it follows that Gt and Lt do not always remain a bounded
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distance apart. However, in the case in which S is a once-punctured torus
or four-times-punctured sphere, it turns out that the quantity Kt(α) is
always bounded and therefore that the two paths are always within bounded
distance of each other. These ideas are taken further in [CRS], where we
show that Lt is a Teichmüller quasi-geodesic.

The greater part of the work of this paper is contained in the proof of
Theorem C. It is carried out in several steps. First, using the derivative
formulae mentioned above, we show in Theorem 6.1 that the length may be
estimated by a formula identical to that in Theorem C, except that Kt(α)
is replaced by another geometric quantity

Ht(α) = sup
β∈B

lqt(β)
lqt(α)

.

Here B are those pants curves in a short pants decomposition of Lt (see
section 3.1) which are boundaries of pants adjacent to α, while as above
lqt denotes length in the singular Euclidean metric associated to qt. This is
the content of section 6.

We now need to compare Ht(α) and Kt(α). From the definition it is
quite easy to show (Proposition 7.1) that Ht(α) � Kt(α). In particular,
it follows that a curve that is short in Gt is at least as short in Lt. Next,
we show in Proposition 7.8 that on a subsurface whose injectivity radius
is bounded below in Gt, the injectivity radius with respect to Lt is also
bounded below, perhaps by a smaller constant. The main point in the proof
is Proposition 7.4, which shows that the hyperbolic metric on Lt not only
minimizes the sum of lengths l(ν+

t ) + l(ν−t ), but also, up to multiplicative
error, it minimizes the contribution of l(ν+

t )+l(ν−t ) to each thick component
of the thick-thin decomposition of Gt. This proves Theorem A.

Having set up a one-to-one correspondence between the thick compo-
nents of Gt and Lt, we show in Theorem 7.10 and Corollary 7.11 that the
Teichmüller distance between corresponding thick components is bounded.
Finally we are able to prove in Proposition 7.12 that Ht(α) ≺ Kt(α), com-
pleting the proof of Theorem C.

Prior to this paper, the only results related to the relative behavior of G
and L were some partial results about their behavior at infinity. Results of
Masur [Ma] (for Teichmüller geodesics) and of D́ıaz and Series [DS] (for lines
of minima) show that if either ν± are supported on closed curves, or if ν±

are uniquely ergodic, then G and L limit on the same points in the Thurston
boundary of T (S). In general, the question of the behavior at infinity
remains unresolved, but see also [L] which shows that there are Teichmüller



702 Y.-E. CHOI, K. RAFI AND C. SERIES GAFA

geodesics G which do not converge in Thurston’s compactification of T (S).
It is not hard to apply the results of this paper to show the same is true
of lines of minima in Lenzhen’s example; we hope to explore this in more
detail elsewhere.

The motivation for our approach stems in part from a central ingredient
of the proof of the ending lamination theorem [BrCM]. Suppose that N is
a hyperbolic 3-manifold homeomorphic to S × R. The ending lamination
theorem states that N is completely determined by the asymptotic invari-
ants of its two ends. A key step is to show that if these end invariants are
induced by the laminations ν+ and ν−, then the curves on S which have
short geodesic representatives in N can be characterized in terms of their
combinatorial relationship to ν+ and ν−. (The relationship is expressed
using the complex of curves of S, details of which are not needed in what
follows. Roughly speaking, a curve is short in N if and only if the distance
between the projections of ν+ and ν− to some subsurface Y ⊂ S is large
in the curve complex of Y .) In [R1], Rafi found a similar combinatorial
characterization which shows that the curves which are short in N are al-
most, but not quite, the same as those curves which become short along
G(ν+, ν−). Our definition of Kt is closely related to Rafi’s study [R3] of the
relationship between the thick-thin decomposition of a hyperbolic surface
S and a quadratic differential metric on the same surface. The relationship
between these two metrics plays a key role throughout the paper.

The paper is organized as follows. In section 2, we recall some back-
ground facts about lines of minima and Teichmüller geodesics. In section 3,
we prove Theorem 3.8 mentioned above, which states that if both Gt and
Lt are contained in the thick part of T (S), then the Teichmüller distance
between them is bounded. We hope that treating this special case sepa-
rately early on will give some intuition about what needs to be done in
general. In section 4, we review twists and Fenchel–Nielsen coordinates
and in section 5, after reviewing some fundamental facts about quadratic
differential metrics, we derive Theorem B and state the estimates for twists
about short curves proved in [R2]. In section 6, we prove Theorem 6.1 and
derive estimates for twists about the short curves. Finally, in section 7, we
prove Theorems A, C and D. Throughout the paper, we make use of several
basic length estimates on hyperbolic surfaces. The proofs, being somewhat
long but relatively straightforward, are relegated to the Appendix.

Acknowledgments. We thank the referee for carefully reading the manu-
script and leading us to clarify the exposition.
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2 Preliminaries

Throughout, S is an orientable hyperbolizable surface of finite type, possi-
bly with punctures but with no other boundary.

2.1 Thick-thin decomposition. Let S denote the set of free homo-
topy classes of non-peripheral, non-trivial simple closed curves on S. If
(S, σ) is a surface with hyperbolic metric σ and α ∈ S, we write lσ(α)
for the hyperbolic length of the unique geodesic representative of α with
respect to σ. The Margulis lemma provides a universal constant εM > 0
such that all components of the εM-thin part of (S, σ) (i.e. the subset of S
where the injectivity radius is less than εM) are horocyclic neighborhoods
of cusps or annular collars about short geodesics. The εM-thick part of the
surface is the complement of the thin part.

For our purposes, it is necessary to choose a constant ε0 > 0 sufficiently
smaller than εM, in order that the ε0-thick-thin decomposition of a surface
satisfies certain geometric conditions. These conditions will be mentioned
when the context arises, but we assume that ε0 has been chosen once and
for all so that these conditions are met. If lσ(α) < ε0, we shall say that α
is extremely short in σ.

2.2 Notation. Since we will be dealing mainly with coarse estimates,
we want to avoid keeping track of constants which are universal, in that
they do not depend on any specific metric or curve under discussion. For
functions f, g we write f � g and f

∗� g to mean respectively, that there
are constants c > 1, C > 0, depending only on the topology of S and the
fixed constant ε0, such that

1
cg(x) − C ≤ f(x) ≤ cg(x) + C and 1

cg(x) ≤ f(x) ≤ cg(x) .

The symbols ≺,
∗≺, �,

∗� are defined similarly. For a positive quantity X ,
we often write X = O(1) instead of X ≺ 1 to indicate X is bounded
above by a constant depending only on the topology of S and ε0, and more
generally we write X = O(Y ) to mean that X/Y = O(1) for a positive
function Y .

2.3 Measured laminations. We denote the space of measured lami-
nations on S by ML(S). Given any hyperbolic metric σ on S, a measured
lamination ξ ∈ ML(S) can be realized as a geodesic measured lamina-
tion with respect to σ. The hyperbolic length function extends by lin-
earity and continuity to ML(S); we write lσ(ξ) for the hyperbolic length
of a lamination ξ ∈ ML(S). The geometric intersection number i(α, β)
of curves α, β ∈ S also extends continuously to ML(S). Laminations
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µ, ν ∈ ML(S) are said to fill up S if i(µ, ξ)+ i(ν, ξ) > 0 for all ξ ∈ ML(S).
For ξ ∈ ML(S), we denote the underlying leaves by |ξ|.

2.4 Teichmüller space. The Teichmüller space T (S) of S is the space
of all conformal structures on S up to isotopy. The Teichmüller distance
dT (S)(Σ,Σ′) between two marked Riemann surfaces Σ,Σ′ ∈ T (S) is
[logK]/2, where K is the smallest quasiconformal constant of a homeo-
morphism from Σ to Σ′ which is isotopic to the identity.

Each conformal structure Σ ∈ T (S) is uniformized by a unique hy-
perbolic structure σ, and conversely, each hyperbolic structure σ has an
underlying conformal structure Σ. Thus, we also consider T (S) to be the
space of all hyperbolic metrics on S up to isotopy. The thick part Tthick(S)
of T (S) will be defined as the subset of all hyperbolic metrics such that
every closed geodesic has length bounded below by the constant ε0.

2.5 Kerckhoff lines of minima. Suppose that ν+, ν− ∈ ML(S) fill
up S. Kerckhoff [Ke3] showed that the length function

σ �→ lσ(ν+) + lσ(ν−)

has a global minimum on T (S) at a unique surface L0. Moreover, as t
varies in (−∞,∞), the surface Lt ∈ T (S) that realizes the global minimum
of l(ν+

t ) + l(ν−t ) for the weighted laminations ν+
t = etν+ and ν−t = e−tν−

varies continuously with t and traces out a path t �→ Lt called the line of
minima L(ν+, ν−) of ν±.

2.6 Quadratic differentials. We give a brief summary of facts about
quadratic differentials that we use and refer the reader to [G], [St] for a
detailed and comprehensive background. Let Σ be a Riemann surface and
q a quadratic differential on Σ which is holomorphic, except possibly at
punctures, where q may have a pole of order one. This ensures that the area
of Σ with respect to the area element |q(z)dz2| is finite, and we normalize so
that the area is 1. Let Q(Σ) be the space of all such meromorphic quadratic
differentials on Σ.

The zeros and poles of q are called critical points. Away from the critical
points, we have two mutually orthogonal line fields defined respectively by
the conditions that Im

[√
q(z)dz

]
is zero and Re

[√
q(z)dz

]
is zero. This

defines a pair of measured singular foliations on Σ with singularities at the
critical points of q, respectively called the horizontal foliation Hq and the
vertical foliation Vq. The measures on these foliations are determined by
integrating the line element

∣
∣
√
q(z)dz

∣
∣. More precisely, for a curve η, its
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horizontal and vertical measures are given respectively by

hq(η) =
∫

η

∣
∣ Re

[√
q(z)dz

]∣∣ , vq(η) =
∫

η

∣
∣ Im

[√
q(z)dz

]∣∣ .

We call hq(η) and vq(η) respectively, the horizontal length and the vertical
length of η.

Every essential simple closed curve γ in (S, q) has a unique q-geodesic
representative, unless it is in a family of closed Euclidean geodesics foli-
ating an annulus whose interior contains no singularities. We denote the
q-geodesic length of γ by lq(γ). It satisfies the following inequalities:

[
hq(γ) + vq(γ)

]
/
√

2 ≤ lq(γ) ≤ hq(γ) + vq(γ) . (1)

By definition of intersection numbers for measured foliations, we have
vq(γ) = i(Hq, γ) and hq(γ) = i(Vq, γ), so equation (1) implies

lq(γ)
∗� i(Vq, γ) + i(Hq, γ) . (2)

This approximation will be used repeatedly.

2.7 Teichmüller geodesics. Suppose that Σ,Σ′ ∈ T (S) are marked
Riemann surfaces with dT (S)(Σ,Σ′) = d. Then there is a unique quadratic
differential q on Σ such that the conformal structure on Σ′ is obtained from
that of Σ by expanding in the horizontal direction of q by a factor ed and
contracting in the vertical direction by e−d. The homeomorphism which
realizes this is called the Teichmüller map from Σ to Σ′, and has quasicon-
formal distortion e2d. The 1-parameter family of quadratic differentials qt
whose horizontal and vertical foliations are respectively, etHq and e−tVq,
for 0 ≤ t ≤ d, define the geodesic path from Σ to Σ′ with respect to the
Teichmüller metric.

Gardiner and Masur [GM] showed that, for any pair of measured lami-
nations ν+, ν− ∈ ML(S) which fill up S and such that i(ν+, ν−) = 1, there
is a unique Riemann surface Σ ∈ T (S) and a unique quadratic differential
q ∈ Q(Σ) whose horizontal and vertical foliations are ν+, ν− respectively.
(This uses the one-to-one correspondence between the space of measured
laminations and the space of measured foliations.) For t ∈ R, set

ν+
t = etν+, ν−t = e−tν−,

and let Gt and qt be the corresponding Riemann surface and quadratic
differential. The path t �→ Gt defines a Teichmüller geodesic which we
denote G = G(ν+, ν−). We abuse notation and use Gt to also denote the
hyperbolic metric that uniformizes the Riemann surface Gt.
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2.8 The balance time. Let α ∈ S. We say α is vertical along G(ν+, ν−)
if its intersection i(α, ν−) with the vertical foliation ν− vanishes. In this
case, α can be realized as a union of leaves of the vertical foliation. Simi-
larly, α is horizontal if i(α, ν+) = 0. Mostly we shall be dealing with curves
α which are neither horizontal nor vertical. In this case, there is always a
unique time tα at which i(α, ν+

tα) = i(α, ν−tα). We call tα the balance time
of α. The length of α with respect to Gt is approximately convex along G
and is close to its minimum at tα, see [R2, Th. 3.1]. Our estimation of
the hyperbolic lengths of short curves will mainly be made relative to their
balance time.

3 Comparison on the Thick Part of Teichmüller Space

In this section we prove Theorem 3.8, which states that if Gt and Lt are
in the ε0-thick part Tthick(S) of Teichmüller space, then the Teichmüller
distance between them is uniformly bounded by a constant that depends
only on the topology of S and ε0. The idea is to first approximate the
length of a curve ζ for any σ ∈ Tthick(S) by its intersection with what we
call a short marking for σ, and then to compare the short markings for Gt

and Lt. This method will be extended in section 7 when we consider the
Teichmüller distance between Gt and Lt in general. We begin with some
definitions.

3.1 Short markings. We call a maximal collection of pairwise disjoint,
homotopically distinct, non-peripheral, non-trivial simple closed curves
on S, a pants curve system on S. The terminology is due to the fact that
the complementary components are pairs of pants, i.e three holed spheres
(in which some boundary components may be punctures). Our notion of a
marking is motivated by [MaM2]:

Definition 3.1. A marking M on a surface S is a system of pants curves
α1, . . . , αk and simple closed curves δα1 , . . . , δαk

such that





i(αi, δαj ) = 0 if i �= j ,

i(αi, δαi) = 2 if two distinct pairs of pants are adjacent along αi ,

i(αi, δαi) = 1 if αi is adjacent to only a single pair of pants .

We call δαi the dual curve of αi.

In the second case, αi ∪ δαi fill a four-holed sphere (that is, a regular
neighborhood of αi ∪ δαi is homeomorphic to a four-holed sphere) and in
the third case αi ∪ δαi fill a one-holed torus. It is easy to see that any
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two markings which have the same pants system P have dual curves which
differ only by twists and half-twists around the curves in P.

The following well-known lemma states that for any hyperbolic metric,
one can always choose a pants system whose length is universally bounded:
Lemma 3.2 (Bers [Be2]). There exists a constant L > 0 such that for
every σ ∈ T (S) there is a pants curve system P with the property that
lσ(α) < L for every α ∈ P.

If the boundary curves of a pair of pants have bounded length as in
Bers’ lemma, the geometry of a pair of pants satisfies the following (for a
proof, see Appendix):
Lemma 3.3. Let P be a totally geodesic pair of pants with boundary
curves α1, α2, α3 of lengths l(αi) < L for i = 1, 2, 3. Then the common
perpendicular of αi, αj (where possibly i = j) has length

log
1

l(αi)
+ log

1
l(αj)

±O(1) ,

where the bound on the error depends only on L.

We will say that a pants curve system as in Lemma 3.2 is short in
(S, σ). A short marking Mσ for σ is a short pants system together with a
dual system chosen so that each dual curve δαi is the shortest among all
possible dual curves. For a given pants curve, notice that there may be
more than one shortest dual curve, in which case any choice will suffice.
Also notice that not all curves in a short marking are necessarily short ; if
a pants curve is very short, then the corresponding dual curve will be very
long. More precisely, we have the following easy consequence of Lemma 3.3:
Corollary 3.4. Let Mσ be a short marking for σ and let α, δα ∈Mσ be
a pants curve and its dual. Then

lσ(δα) = i(δα, α) · 2 log
1

lσ(α)
±O(1) .

Observe that if σ ∈ Tthick(S), since the length of every curve in Mσ is
uniformly bounded below, it follows from Lemma 3.2 and Corollary 3.4 that
the length of every curve in Mσ is also uniformly bounded above. Thus, if
σ ∈ Tthick(S), we have lσ(Mσ) ∗� 1.

For surfaces in the thick part of T (S), short markings coarsely determine
the geometry. We express this in the following proposition whose proof
can be found in the proof of Lemma 4.7 in [Mi2] (see also the proof of
Proposition 7.7 below). If M is a marking and ξ ∈ ML(S), we write

i(M, ξ) =
∑

γ∈M

i(γ, ξ) .
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Proposition 3.5. Let Mσ be a short marking for σ ∈ Tthick(S). Then
for any ζ ∈ S,

lσ(ζ) ∗� i(Mσ , ζ) .

Since both length and intersection number scale linearly with weights
of simple closed curves, it follows that

Proposition 3.6. Let Mσ be a short marking for σ ∈ Tthick(S). Then
for any ξ ∈ ML(S),

lσ(ξ) ∗� i(Mσ , ξ) .

3.2 Comparison on the thick part. We use the estimate in Propo-
sition 3.6 to compare Gt and Lt in the thick part of T (S). The following
well-known lemma is proved in greater generality in [R3] (see Theorem
5.5(ii) below). Recall that Σ denotes the conformal structure associated to
the metric σ.

Lemma 3.7. Suppose that σ ∈ Tthick(S) and q ∈ Q(Σ). Then for every
ζ ∈ S,

lσ(ζ) ∗� lq(ζ) .

Theorem 3.8. If Gt,Lt ∈ Tthick(S) then dT (S)(Gt,Lt) = O(1).

Proof. By Lemma 3.7, equation (2), and Proposition 3.6, we have

lGt(MGt)
∗� lqt(MGt)

∗� i(MGt , ν
+
t ) + i(MGt , ν

−
t )

∗� lGt(ν
+
t ) + lGt(ν

−
t ) . (3)

Now, since Lt minimizes lσ(ν+
t ) + lσ(ν−t ) over all σ ∈ T (S), we have

lGt(ν
+
t ) + lGt(ν

−
t ) ≥ lLt(ν

+
t ) + lLt(ν

−
t ) .

Reversing the sequence of estimates in equation (3), we get

lLt(ν
+
t ) + lLt(ν

−
t ) ∗� i(MLt , ν

+
t ) + i(MLt , ν

−
t ) ∗� lqt(MLt)

∗� lGt(MLt) .

Putting together the preceding three equations, we have

lGt(MGt)
∗� lGt(MLt) .

Since Gt ∈ Tthick(S), it follows from the observation following Corollary 3.4
that

lGt(MLt)
∗≺ 1 . (4)

Notice also that lLt(MLt)
∗≺ 1. Lemma 4.7 of [Mi2] implies that for any

given B > 0, the diameter of the set {σ ∈ T (S) : lσ(MLt) < B}, with
respect to the Teichmüller distance, is bounded above by a constant that
depends only on B. Thus it follows that dT (S)(Gt,Lt) = O(1). �
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4 Twists and Fenchel–Nielsen Coordinates

In order to compare surfaces in the thin part of Teichmüller space, our main
tool will be Minsky’s product region theorem [Mi3]. This uses Fenchel–
Nielsen coordinates to give a nice coarse expression for Teichmüller dis-
tance between surfaces which have common thin parts. To state the results
precisely, we first discuss twists and Fenchel–Nielsen coordinates.

4.1 Twists in hyperbolic metrics. There are various ways to define
the twist of one curve around another, all of which differ by factors unim-
portant to us here. We shall follow Minsky [Mi3]. Let σ ∈ T (S) be a
hyperbolic metric and let α be an oriented simple closed geodesic on (S, σ).
Let ζ be a simple geodesic that intersects α transversely and let p be a point
of intersection. In the universal cover H

2, a lift ζ̃ of ζ intersects a lift α̃ of
α at a lift p̃ of p, and has endpoints ζR, ζL on ∂∞H

2 to the right and left
of α̃, respectively (see Figure 1). Let pR, pL be the orthogonal projections

��

��

��

��

��

��

��

Figure 1: Defining the twist of ζ around α.

of ζR, ζL to α̃ respectively. Then the twist of ζ around α at p is defined as

twσ(ζ, α, p) = ±dH
2(pR, pL)
lσ(α)

,

where the sign is (+) if the direction from pL to pR coincides with the
orientation of α̃ and (−) if it is opposite. For any other point q ∈ ζ ∩ α,
the twist satisfies ([Mi3, Lem. 3.1])∣

∣twσ(ζ, α, q) − twσ(ζ, α, p)
∣
∣ ≤ 1 .

To obtain a number that is independent of the point of intersection, Minsky
defines

twσ(ζ, α) = min
p∈ζ∩α

twσ(ζ, α, p) .

For convenience, we write Twσ(ζ, α) for |twσ(ζ, α)|.



710 Y.-E. CHOI, K. RAFI AND C. SERIES GAFA

Note that the definition of twist is valid even if the simple geodesic ζ is
not closed, because the inequality

∣∣twσ(ζ, α, q) − twσ(ζ, α, p)
∣∣ ≤ 1

depends only on the fact that different lifts of ζ are disjoint. Thus if ν is a
measured geodesic lamination that intersects α transversely, we can define
the twist of ν around α by taking the infimum of twists over all leaves
of ν that intersect α. We remark that although we will be working with
measured geodesic laminations, when defining the twist, the measure is ir-
relevant, in other words the twist twσ(ν, α) depends only on the underlying
lamination |ν|.
4.2 Fenchel–Nielsen coordinates. We define the Fenchel–Nielsen co-
ordinates (

lσ(αi), sαi(σ)
)k

i=1

associated to a pants curves system α1, . . . , αk in the following standard
way, see for example [Mi3]. Suppose that P is a pair of pants that is the
closure of a component of S \ {α1, . . . , αk}. By a seam of P , we mean a
common perpendicular between two distinct boundary components of P .
(Notice that the definition of seam refers to the internal geometry of P
alone; two distinct boundary curves of P may project to the same curve
on S.) Each boundary curve of P is bisected by the two points at which
it meets the two seams intersecting it. We first construct a base surface
σ0 = σ0(l01, . . . , l

0
k) in which the pants curve αi has some specific choice of

length l0i . Each αi is adjacent to two (possibly coincident) pairs of pants; we
glue these two pants together in such a way that seams incident on αi from
the two sides match up. Since the seams meet the pants curves orthogonally,
they glue up to form a collection of closed geodesics γj . Any other structure
σ ∈ T (S) comes endowed with an associated homeomorphism h : σ0 → σ.
The length coordinates of σ are defined by lσ(αi). Let σ0(l1, . . . , lk) denote
the surface in which αi (more precisely h(αi)) has length li = lσ(αi), while
the curves formed by gluing the new seams are exactly the images h(γj).
Now define ταi(σ) to be the signed distance that one has to twist around
αi to obtain σ starting from σ0(l1, . . . , lk), where the sign is determined
relative to a fixed orientation on σ0 and hence on σ. Finally we define the
twist coordinates of σ by

sαi(σ) =
ταi(σ)
lσ(αi)

∈ R .

Lemma 4.1 (Minsky [Mi3, Lem. 3.5]). For any lamination ν ∈ ML(S)
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that intersects α = αi and any two metrics σ, σ′ ∈ T (S),
∣∣(twσ(ν, α) − twσ′(ν, α)) − (sα(σ) − sα(σ′))

∣∣ ≤ 4 .

In [Mi3], the statement is only given for closed curves. However the ar-
gument extends without change to laminations. This is because the proof in
[Mi3] is based on the observation that for any two simple closed curves ζ1, ζ2
intersecting α, the difference twσ(ζ1, α) − twσ(ζ2, α) is a topological quan-
tity, independent of σ, up to a bounded error of 1. More precisely, it follows
from the proof in [Mi3] that if S̃ is the annular cover of S corresponding
to α, and if ζ̃1 and ζ̃2 are respectively, lifts of ζ1 and ζ2 intersecting the core
α̃ of S̃, then the difference twσ(ζ1, α)− twσ(ζ2, α) is the signed intersection
of ζ̃1 and ζ̃2 in the annulus S̃, up to a bounded error. This topological
characterization holds even when ζ1 and ζ2 are simple geodesics which are
not necessarily closed.

4.3 Relative twist in an annulus. The above topological observation
allows us to define the following:

Definition 4.2. For any two laminations ν1, ν2 that intersect a curve α,
define their algebraic intersection around α to be

iα(ν1, ν2) = inf
σ

[
twσ(ν1, α) − twσ(ν2, α)

]
,

where the infimum is taken over all possible surfaces σ ∈ T (S).

Often we need only the absolute value:

Definition 4.3. For any two laminations ν1, ν2 that intersect a curve α,
define the relative twisting of ν1, ν2 around α to be

dα(ν1, ν2) =
∣
∣iα(ν1, ν2)

∣
∣ .

Thus for any σ ∈ T (S), we have
∣∣twσ(ν1, α) − twσ(ν2, α)

∣∣ = dα(ν1, ν2) +O(1) .

Notice that iα(ν1, ν2) and dα(ν1, ν2) are independent of the measures on
ν1, ν2, depending only on the underlying laminations |ν1| and |ν2|.

Using Definition 4.2, one sees easily that

iα(ν1, ν2) = iα(ν1, ξ) − iα(ν2, ξ) +O(1) , (5)

for any curve ξ transverse to α. It is also easily seen that dα(ν1, ν2) agrees up
to O(1) with the definition of subsurface distance between the projections
of |ν1| and |ν2| to the annular cover of S with core α, as defined in [MaM2,
§2.4] and used throughout [R1,2].

Another essentially equivalent way of measuring twist is to look at the
intersection with the shortest curve transverse to α:
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Lemma 4.4. Let α be a pants curve and let δα be a shortest dual curve of
α in some marking for σ. Then for any simple closed curve ζ intersecting α,
we have |twσ(ζ, α) − iα(ζ, δα)| = O(1).

Proof. Since iα(ζ, δα) = twσ(ζ, α)− twσ(δα, α), up to a bounded error of 1,
it is sufficient to show that |twσ(δα, α)| = O(1).

Let δ̃α be a lift of δα in the universal cover H
2 and let α̃, α̃′ be the

two lifts of α containing the endpoints of δ̃α (see Figure 2). Let η be
the perpendicular between α̃ and α̃′ and let p, p′ be the endpoints of η on

�

� ��

�

��

�
��

���

Figure 2: Bound on the twist of δα around α.

α̃, α̃′, respectively. Since δα is the shortest dual curve, the endpoints of δ̃α
must be within distance lσ(α) from p, p′. Let q, q′ be points on α̃, α̃′ at
distance lσ(α) from p, p′, respectively, on opposite sides of η. It is easy to
see that |twσ(δα, α)| ≤ |twσ(β, α)|, where β is the geodesic through q, q′.
Let r be the foot of the perpendicular as shown. As in the first part of
the proof of Lemma 3.5 in [Mi3], we note that since the images of α̃′ under
the translation along α̃ are disjoint, the projection of α̃′ on α̃ has length at
most lσ(α). Thus l(pr) < l(pq) = l(α). Hence,

∣
∣twσ(β, α)

∣
∣ = 2

l(pq) + l(pr)
l(α)

< 4 . �

4.4 The product region theorem. Let A ⊂ S be a collection of
disjoint, homotopically distinct, simple closed curves on S and let
Tthin(A, ε0) ⊂ T (S) be the subset in which all curves α ∈ A have hyperbolic
length at most ε0. Extend A to a pants decomposition and define Fenchel–
Nielsen coordinates as above. Let SA denote the surface obtained from
S by removing all the curves in A and replacing the resulting boundary
components by punctures.
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Following [Mi3], we now define a projection

Π: T (S) → T (SA) × Hα1 × . . . × Hαr ,

where A = {α1 . . . , αr} and Hαi is the upper half-plane. The first compo-
nent Π0 which maps to T (SA) is defined by forgetting the coordinates of
the curves in A and keeping the same Fenchel–Nielsen coordinates for the
remaining surface. For α ∈ A define Πα : T (S) → Hα by

Πα(σ) = sα(σ) + i/lσ(α) ∈ Hα .

Let dHα be half the usual hyperbolic metric on Hα. Minsky’s product region
theorem states that, up to bounded additive error, Teichmüller distance on
Tthin(A, ε0) is equal to the sup metric on

T (SA) × Hα1 × . . . × Hαr .

Theorem 4.5 (Minsky [Mi3]). Let σ, τ ∈ Tthin(A, ε0). Then

dT (S)(σ, τ) = max
α∈A

{
dT (SA)(Π0(σ),Π0(τ)), dHα(Πα(σ),Πα(τ))

}
±O(1) .

We remark that Minsky makes several assumptions on the size of ε0 in
order to prove the above theorem. We may assume that our initial choice of
ε0 satisfies these assumptions. Recall from section 2.1 that a curve α ∈ S
is said to be extremely short if lσ(α) < ε0. The distance between the
projections to Hα can be approximated as follows:

Lemma 4.6. Suppose α ∈ S is extremely short in both σ, τ . Then

exp 2dHα

(
Πα(σ),Πα(τ)

) ∗� max
{
lσlτ |sα(σ) − sα(τ)|2, lτ/lσ , lσ/lτ

}
,

where lσ = lσ(α) and lτ = lτ (α).

Proof. This is a simple calculation using the formula

cosh 2dH(z1, z2) = 1 +
|z1 − z2|2

2 Im z1 Im z2
,

where dH is as above half the usual hyperbolic distance in H. �

The lemma reveals a useful fact from hyperbolic geometry: unless the
difference |x − x′| is extremely large, the distance between two points
x+ iy, x′ + iy′ ∈ H is dominated by |log[y/y′]|. In our situation this means
that unless the difference between the twist coordinates is extremely large
in comparison to the lengths, their contribution to hyperbolic distance can
be neglected. We quantify this in the following useful corollary which shows
that as long as each twist coordinate is bounded by O(1/l), it can be ne-
glected when estimating the contribution to Teichmüller distance coming
from the same short curve in two surfaces.
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Corollary 4.7. Suppose that σ1, σ2 ∈ Tthin(α, ε0) and that, for i = 1, 2,
ν ∈ ML(S) satisfies

Twσi(ν, α) lσi(α) = O(1) .

Then

dHα

(
Πα(σ1),Πα(σ2)

)
=

1
2

∣∣
∣∣log

lσ1(α)
lσ2(α)

∣∣
∣∣ ±O(1) .

Proof. This follows easily from Lemma 4.6, using Lemma 4.1 to approx-
imate sα(σ1) − sα(σ2) by twσ1(ν, α) − twσ2(ν, α). (Cross terms such as
sα(σ1)lσ2(α) may be rearranged as [sα(σ1)lσ1(α)][lσ2(α)/lσ1(α)].) Note that
the multiplicative error in Lemma 4.6 translates to an additive error in the
distance. �

5 Short Curves along Teichmüller Geodesics

In this section we prove Theorem B, stated more precisely as Theorem 5.10.
This gives a combinatorial estimate for the hyperbolic length of an ex-
tremely short curve along the Teichmüller geodesic G(ν+, ν−). We also
recall the estimate for the twist of ν± around such curves (Theorem 5.11)
proved in [R2].

Deriving the length estimate is largely a matter of putting together re-
sults proved in [Mi1], [R1,3]. Both estimates are made by a careful study
of the relationship between the hyperbolic metric Gt and the quadratic dif-
ferential metric qt. As indicated in the Introduction, there are two distinct
reasons why a curve α may become extremely short: one is that the relative
twisting of ν+ and ν− around α may be very large, the other that ν+ and
ν− may have large relative complexity in S \ α. We express the latter in
terms of a scale factor which controls the relationship between the quadratic
differential and hyperbolic metrics on the components of the thick part of
Gt adjacent to α, as made precise in Rafi’s thick-thin decomposition for
quadratic differentials, Theorem 5.5.

We begin in sections 5.1 and 5.2 with some essential facts about the
geometry of annuli with respect to quadratic differential metrics.

5.1 Annuli in quadratic differential metrics. We review the no-
tions of flat and expanding annuli from [Mi3]. These concepts provide the
framework with which to analyze short curves.

Let Σ ∈ T (S) and let q be a quadratic differential on Σ. Let γ be a
piecewise smooth curve in (S, q). At a smooth point p, the curvature κ(p)
is well defined, up to a choice of sign. If γ is the boundary component of
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a subsurface Y , we choose the sign to be positive if the acceleration vector
at p points into Y . At a singular point P , although the curvature is not
defined, we shall say γ is non-negatively curved at P if the interior angle
θ(P ) is at most π and say it is non-positively curved at P if θ(P ) is at
least π. By interior angle, we mean the angle that is on the same side of
γ as Y . We say γ is monotonically curved with respect to Y either if the
curvature is non-negative at every point, or non-positive at every point.
The total curvature of γ is given by

κY (γ) =
∫

γ
κ(p) +

∑ [
π − θ(P )

]
,

where the sum is taken over all singular points P on γ. The Gauss–Bonnet
theorem gives ∑

κY (γ) − π
∑

ordP = 2πχ(Y ) , (6)

where ordP is the order of the zero at P , the first sum is over all boundary
components γ of Y , and the second sum is over the zeros P of q in the
interior of Y .

Let A be an annulus in (S, q) with piecewise smooth boundary. The
following definitions are due to Minsky [Mi1]. We say A is regular if both
boundary components ∂0, ∂1 are monotonically curved with respect to A
and if ∂0, ∂1 are q-equidistant from each other. Suppose that A is a reg-
ular annulus such that κA(∂0) ≤ 0. We say A is an expanding annulus if
κA(∂0) < 0 and we call ∂0 the inner boundary and ∂1 the outer boundary.
Expanding annuli are exemplified by an annulus bounded by a pair of con-
centric circles in R

2. The inner boundary is the circle of smaller radius and
has total curvature −2π, while the outer boundary has total curvature 2π.

A regular annulus is primitive with respect to q if it contains no singu-
larities of q in its interior. By equation (6), its boundaries satisfy κA(∂0) =
−κA(∂1). A regular annulus is flat if κA(∂0) = κA(∂1) = 0. By (6), a
flat annulus is necessarily primitive, and is foliated by Euclidean geodesics
homotopic to the boundaries. Thus a flat annulus is isometric to a cylin-
der obtained as the quotient of a Euclidean rectangle in R

2. Note that a
primitive annulus must either be flat or expanding.

One reason for introducing flat and expanding annuli is that their mod-
uli are easy to estimate. The following result can be deduced from Theo-
rem 4.5 of [Mi1] and is proved in [R1]:

Theorem 5.1. Let A ⊂ S be an annulus that is primitive with respect
to q and with inner and outer boundaries ∂0 and ∂1, respectively. Let d be
the q-distance between ∂0 and ∂1. Then either
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(i) A is flat and ModA = d/lq(∂0); or

(ii) A is expanding and ModA � log[d/lq(∂0)].

5.2 Modulus of annulus and length of short curve. The link be-
tween the hyperbolic and quadratic differential metrics on a surface is made
using annuli of large modulus. Let σ be the hyperbolic metric that uni-
formizes Σ. If α is short in σ, Maskit [M] showed that the extremal length
ExtΣ(α) and hyperbolic length lσ(α) are comparable, up to multiplicative
constants. Moreover, there is an embedded collar C(α) around α in (S, σ)
whose modulus is comparable to 1/lσ(α) (see [Mi3] for an explicit calcu-
lation), and therefore also to 1/ExtΣ(α). By the (geometric) definition of
extremal length, this implies that the maximal annulus around α in Σ has
modulus comparable to 1/lσ(α). The following theorem of Minsky allows
us to replace any annulus of sufficiently large modulus with one that is
primitive:

Theorem 5.2 [Mi1, Th. 4.6]. Let A ⊂ Σ be any homotopically non-
trivial annulus whose modulus is sufficiently large and let q ∈ Q(Σ). Then
A contains an annulus B that is primitive with respect to q and such that
ModA � ModB.

(The statement of Theorem 4.6 in [Mi1] should read ModA ≥ m0 not
ModA ≤ m0.) Thus, we have

Theorem 5.3. If α is a simple closed curve which is sufficiently short in
(S, σ), then for any q ∈ Q(Σ), there is an annulus A that is primitive with
respect to q with core homotopic to α such that

1
lσ(α)

� Mod(A) .

We may assume that ε0 was chosen so that if lσ(α) < ε0, then lσ(α) is
small enough that this theorem is valid.

We can now apply Theorem 5.1 in the following way. It follows from
equation (6) that every simple closed curve γ on (S, q) either has a unique
q-geodesic representative, or is contained in a family of closed Euclidean
geodesics which foliate a flat annulus [St]. Denote by F (γ) the maximal
flat annulus, which necessarily contains all q-geodesic representatives of γ.
If the geodesic representative of γ is unique, then F (γ) is taken to be the
degenerate annulus containing this geodesic alone. Denote the (possibly co-
incident) boundary curves of F (γ) by ∂0, ∂1 and consider the q-equidistant
curves from ∂i outside F (γ). Let ∂̂i denote the first such curve which is
not embedded. If ∂̂i �= ∂i, then the pair ∂i, ∂̂i bounds a region Ei(γ) whose
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interior is an annulus with core homotopic to γ, and which is by its con-
struction regular and expanding. Combining the preceding two theorems
with Theorem 5.1 we have
Corollary 5.4. If α is an extremely short curve on (S, σ), then

1
lσ(α)

� max
{
ModF (α),ModE0(α),ModE1(α)

}
.

Proof. Since α is extremely short, we have 1/ExtΣ(α) � 1/lσ(α) and hence
it follows from the (geometric) definition of extremal length that

1
lσ(α)

� 1
ExtΣ(α)

≥ max
{
ModF (α),ModE0(α),ModE1(α)

}
.

By Theorem 5.3, there is a primitive annulus A whose core is homotopic
to α such that 1/lσ(α) � Mod(A). We will show that

Mod(A) ≺ max
{
ModF (α),ModE0(α),ModE1(α)

}
.

If A is flat, then A must be contained in the maximal flat annulus F (α).
In this case, Mod(A) ≤ ModF (α). If A is expanding, then although it
may not be contained in either E0(α) or E1(α) it must be disjoint from
the interior of F (α). Without loss of generality, let us assume that A lies
on the same side of F (α) as E0(α). Let ∂0 and ∂̂0 be respectively, the
inner and outer boundaries of E0(α). Let C0 and C1 be respectively, the
inner and outer boundaries of A. Since lq(∂0) is equal to the q-length of
the geodesic representative of α, the q-length of the inner boundary of A
satisfies lq(C0) ≥ lq(∂0). Let ω be a q-shortest arc in E0(α) from ∂0 to
itself; its length is 2dq(∂0, ∂̂0). The intersection ω ∩ A is a union of two
arcs, each of which goes from one boundary component of A to another.
Since lq(ω∩A) ≤ lq(ω), it follows that dq(C0, C1) ≤ lq(ω∩A)/2 ≤ dq(∂0, ∂̂0).
Thus, it follows from Theorem 5.1 that

Mod(A) � log
dq(C0, C1)
lq(C0)

≤ log
dq(∂0, ∂̂0)
lq(∂0)

� Mod
(
E0(α)

)
. �

The idea of our basic length estimates for extremely short curves α in
Theorem 5.10, is to combine this corollary with the estimates for the moduli
of F (α) and Ei(α) in Theorem 5.1.

5.3 Thick-thin decomposition and the q-metric. The thick-thin
decomposition for quadratic differentials developed in [R3] describes the
relationship between the q-metric on the surface Σ and the uniformizing
hyperbolic metric σ in the thick components of the thick-thin decomposition
of σ. It states that on the hyperbolic thick parts of (S, σ) the two metrics are
comparable, up to a factor which depends on the moduli of the expanding
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annuli around the short curves in the boundary of the thick component.
This factor will be crucial in our estimates below.

To make a precise statement, for a subsurface Y of S, define the q-
geodesic representative of Y to be the unique subsurface Ŷ of (S, q) with
q-geodesic boundary in the homotopy class of Y that is disjoint from the
interior of F (γi) for all components γi of ∂Y . Notice that Ŷ is q-geodesically
convex, so that if a closed curve ζ is contained in Y , it has a q-geodesic
representative contained in Ŷ . (It is possible for Ŷ to be degenerate. See
[R3] for an example where the area of Ŷ is zero.)

If Y is not a pair of pants, define λY to be the length of the q-shortest
non-peripheral simple closed curve contained in Ŷ . If Y is a pair of pants,
define λY to be max{lq(γ1), lq(γ2), lq(γ3)} where γ1, γ2, γ3 are the three
boundary curves of Ŷ . The thick-thin decomposition for quadratic differ-
entials is the following:

Theorem 5.5 (Rafi [R3]). Let σ be the hyperbolic metric that uni-
formizes Σ and let Y be a thick component of the hyperbolic thick-thin
decomposition of (S, σ). Then

(i) diamq Ŷ
∗� λY ;

(ii) For any non-peripheral simple closed curve ζ in Y , we have

lq(ζ)
∗� λY lσ(ζ) .

5.4 Twist in the q-metric. In order to compare two surfaces, we
need to estimate not only the lengths but also the twist parameters of short
curves. To do this we use a signed version of Rafi’s definition [R2, §4] of the
twist of a simple curve ζ about another curve α in a quadratic differential
metric q on S.

Let A ⊂ S be a regular annulus with core curve α, let S̃ be the annular
cover of S corresponding to α, and let α̃ be a q̃-geodesic representative of the
core of S̃. Suppose that ζ is a simple q-geodesic (i.e. geodesic with respect
to the q-metric) that intersects α, and let ζ̃ be a lift which intersects α̃.
Let β̃ be a bi-infinite q̃-geodesic arc in S̃ that is orthogonal to α̃. We
would like to define the twist twq(ζ, α) to be the sum aS̃(ζ̃ , β̃) of the signed
intersection numbers over all intersections between ζ̃ and β̃. The following
lemma shows that aS̃(ζ̃ , β̃) is, up to a bounded additive error, independent
of the choices of β̃ and ζ̃ .

Lemma 5.6. Let α, α̃, and S̃ be as above and suppose that ζ is a simple
q-geodesic transverse to α. Suppose that ζ̃, ζ̃ ′ are different lifts of ζ that
intersect α̃ and that β̃, β̃′ are different bi-infinite q̃-geodesic arcs orthogonal
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to α̃. Then
aS̃(ζ̃ , β̃) = aS̃(ζ̃ ′, β̃′) ±O(1) .

Proof. Let F̃ (α) be the lift to S̃ of the maximal flat annulus F (α) around
α̃ and let aF (ζ̃ , β̃) denote the sum of signed intersection numbers over
intersection points within F̃ (α). A simple Euclidean argument shows that,
for any two disjoint arcs ζ̃, ζ̃ ′, we have

aF (ζ̃ , β̃) = aF (ζ̃ ′, β̃′) ±O(1) .
We claim that outside F̃ (α), any two q̃-geodesics can intersect at most
twice. Outside F̃ (α), S̃ is made up of two regular expanding annuli E1, E2,
one attached to each boundary of F̃ (α). These annuli extend out to in-
finity in S̃ (which can be compactified using the hyperbolic metric on S,
see [MaM2, §2.4]). The key point is that in any expanding annulus E,
two geodesic arcs can intersect at most once. For if they intersected twice,
we would get a piecewise geodesic loop γ homotopic to the inner bound-
ary, made up of two geodesic arcs that go from one intersection point to
the other. Along each arc, the geodesic curvature vanishes. The Gauss–
Bonnet theorem in equation (6) applied to the annulus bounded by γ and
the inner boundary shows this is impossible. (Notice that if E is not prim-
itive, then the singularities of q in E only improve the desired inequality in
equation (6).) �

We define twq(ζ, α) to be the minimum of the numbers aS̃(ζ̃ , β̃) over
all choices of ζ̃, β̃. Notice that the argument requires only that the lifts of
ζ to S̃ be disjoint, so that we can similarly define twq(ν, α) for a geodesic
lamination ν where as usual, twq(ν, α) depends only the underlying support
|ν| of ν.

The following key result allows us directly to compare the twists in the
hyperbolic and quadratic differential metrics.
Proposition 5.7 [R2, Th. 4.3]. Suppose that σ is a hyperbolic metric
uniformizing a surface Σ ∈ T (S) and that q ∈ Q(Σ), and let ν be a geodesic
lamination intersecting α. Then

∣
∣twσ(ν, α) − twq(ν, α)

∣
∣ = O

(
1/lσ(α)

)
.

The statement in [R2] has iα(ν, δα) in place of twσ(ν, α), however by
Lemma 4.4, this distinction is unimportant. The result in [R2] is stated for
closed curves but extends immediately to the case of geodesic laminations
as explained above.

5.5 Length and twist along G(ν+, ν−). As explained at the end
of section 5.2, we can use Theorem 5.1 and Corollary 5.4 to estimate the
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length of an extremely short curve α in Gt. We call a flat or expanding
annulus which achieves the maximum modulus in Corollary 5.4 a dominant
annulus for α. There may be more than one dominant annulus, but this
will not affect our reasoning and we will refer to ‘the dominant annulus’.
The estimates depend on whether the dominant annulus is flat or expand-
ing, corresponding to the two terms Dt(α) and Kt(α) in the main result
Theorem 5.10 of this section.

Suppose first that the maximal flat annulus Ft(α) is dominant. Provided
that α is neither vertical nor horizontal (see section 2.8), the following
proposition expresses ModFt(α) in terms of the relative twisting dα(ν+, ν−)
of ν+, ν− around α defined in section 4.3. The case in which α is either
horizontal or vertical, so that either ν+ or ν− has empty intersection with α,
is easier and is dealt with in section 5.6.
Proposition 5.8. Let α be a curve in (S, q) that is neither vertical nor
horizontal and suppose that the maximal flat annulus Ft(α) is dominant.
Then

ModFt(α) � e−2|t−tα|dα(ν+, ν−) .
Proof. Since a flat annulus is Euclidean, its geometry is very simple. Let
η be a qt-geodesic arc in Ft(α) joining the two boundaries of Ft(α) that is
orthogonal to the geodesic representatives of α. For a simple geodesic ζ
transverse to α, define twFt(ζ, α) to be the signed intersection number of
ζ with η in Ft(α). It is independent of the choice of η up to a bounded
error of 1. Assuming that α is neither vertical nor horizontal, then at
the balance time tα (see section 2.8) the horizontal and vertical foliations
both make an angle of π/4 with the qtα-geodesic representatives of α. In
this case, a leaf of ν+

tα or ν−tα intersects η approximately (up to an error
of 1) lqtα

(η)/lqtα
(α) times, so the modulus of Ftα(α) is approximated by

twFtα
(ν+, α) = twFtα

(ν−, α). More generally, the horizontal leaves make an
angle ψt with α, where |tanψt| = e2(t−tα). From this it is a straightforward
exercise in Euclidean geometry, see section 4.1 of [R2], to prove∣

∣twFt(ν
±, α) − e∓2(t−tα) ModFt(α)

∣
∣ ≤ 1 . (7)

We will show that∣
∣twFt(ν

+, α) − twFt(ν
−, α)

∣
∣ = dα(ν+, ν−) ±O(1) , (8)

from which the proposition follows. From the proof of Lemma 5.6 we have
twqt(ζ, α) = twFt(ζ, α)±O(1). Now it was observed in section 4.2 (see also
the subsequent discussion in section 4.3) that although twσ(ν, α) depends
on the metric σ in which it is measured, the difference in twist of ν+ and ν−

equals (up to a bounded error) the number of times a leaf of ν+ intersects
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a leaf of ν− in the annular cover of S corresponding to α. Since this also
holds for a quadratic differential metric, we get

∣
∣twqt(ν

+, α) − twqt(ν
−, α)

∣
∣ =

∣
∣twσ(ν+, α) − twσ(ν−, α)

∣
∣ ±O(1)

= dα(ν+, ν−) ±O(1) .

Equation (8) follows. �

Suppose now that one or other of the expanding annuli around α is
dominant. The estimate of modulus in this case is given by

Proposition 5.9. Let q ∈ Q(Σ). Suppose that α is extremely short in σ
and let Y be a thick component of the hyperbolic thick-thin decomposition
of (S, σ), one of whose boundary components is α. Let α̂ be the q-geodesic
representative of α on the boundary of Ŷ and let E(α) be a maximal
expanding annulus on the same side of α̂ as Ŷ . If E(α) is dominant, then

ModE(α) � log
λY

lq(α)
.

Proof. Let dq denote the q-metric. By Theorems 5.2 and 5.1(ii), it is
sufficient to show that dq(∂0, ∂1) � λY .

Note that although E(α) is not necessarily contained in Ŷ , the outer
boundary ∂1 must intersect Ŷ . Hence, dq(∂0, ∂1) ≤ diamq(Ŷ ) and so, by
Theorem 5.5(i), we have dq(∂0, ∂1) ≺ λY .

Now we prove the inequality in the other direction. Observe that since
E(α) is maximal, the outer boundary ∂1 intersects itself and so there is
a non-trivial arc ω with endpoints on α̂ whose length is 2dq(∂0, ∂1). First
suppose that ω is contained in Ŷ . A regular neighborhood of α̂∪ω is a pair
of pants whose boundary curves are homotopic to α and two additional
curves ζ1, ζ2. Note that for i = 1, 2,

lq(ω) + lq(α) ≥ lq(ζi) .

Thus, if either ζ1 or ζ2, say ζ1 is non-peripheral in Y , then
dq(∂0, ∂1)
lq(α)

� lq(ζ1)
lq(α)

≥ λY

lq(α)
.

If both ζ1, ζ2 are peripheral, then Y is a pair of pants, and we have
dq(∂0, ∂1)
lq(α)

� lq(ζ1) + lq(ζ2)
lq(α)

� λY

lq(α)
.

If ω exits Ŷ , we replace it with a new arc ω′ as follows. Let p be the
first exit point and let γ be the boundary component of Ŷ that contains p.
Let ω′ be the arc that first goes along ω to p, then makes one turn around
γ from p to itself, then comes back to α̂ along the first path. Because γ
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is in the boundary of Ŷ , its hyperbolic length is extremely short and thus,
by Theorem 5.3, the original arc ω must pass through an annulus of large
modulus with core curve γ. Therefore, lq(γ) ≺ lq(ω) and so we have

lq(ω′) ≤ 2lq(ω) + lq(γ) ≺ lq(ω) .

Now we can run the same argument as above with ω′ in place of ω to deduce
the desired inequality. �

We are now able to write down the desired length estimate. Suppose
that the curve α is extremely short in some surface Gt along the Teichmüller
geodesic G(ν+, ν−). Let Y1, Y2 be the thick components of the thick-thin
decomposition of (S,Gt) that are adjacent to α (where Y1 may equal Y2).
Define

Kt(α) = max
{

λY1

lqt(α)
,
λY2

lqt(α)

}
(9)

and

Dt(α) = e−2|t−tα|dα(ν+, ν−) . (10)

Then, combining Corollary 5.4 and Propositions 5.8 and 5.9, we obtain our
first main result which is essentially Theorem B of the Introduction:

Theorem 5.10. Let α be a curve on S that is neither vertical nor
horizontal. If α is extremely short in Gt, then

1
lGt(α)

� max
{
Dt(α), logKt(α)

}
.

It was shown in [R1] that Kt(α) can be estimated combinatorially as
the subsurface intersection of ν+, ν− in the corresponding component of the
thick part of Gt adjacent α. Since this is not necessary for our development,
we shall not go into this here.

We need to estimate not only the lengths but also the twist param-
eters about short curves. Combining Proposition 5.7 with equation (7),
Lemma 5.6, Proposition 5.8, and Theorem 5.10, we get

Theorem 5.11 [R2, Th. 1.3]. With the same hypotheses as Theorem 5.10,

TwGt(ν
+, α) = O

(
1

lGt(α)

)
if t ≥ tα ,

TwGt(ν
−, α) = O

(
1

lGt(α)

)
if t ≤ tα .
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5.6 Estimates for horizontal and vertical short curves on G. We
also need the analogue of Theorems 5.10 and 5.11 for extremely short curves
α which are either horizontal or vertical.

For definiteness, assume α is vertical so that i(α, ν−) = 0. The definition
of balance time no longer makes sense. Instead, we work relative to time
t = 0. Let d be the height (i.e. distance between the two boundaries) of
F0(α). At an arbitrary time t,

lqt(α) = i(α, ν+
t ) = etlq0(α) ,

while the height of Ft(α) is e−td. Hence

ModFt(α) = e−2t ModF0(α) . (11)

This is the analogue of Proposition 5.8.
If α is vertical, the discussion in Proposition 5.9 about expanding annuli

is unchanged. Thus we obtain

Theorem 5.12. Let α be a vertical curve on S. If α is extremely short
in Gt, then

1
lGt(α)

� max
{
e−2t ModF0(α), logKt(α)

}
.

If α is horizontal, the estimate is the same except that the first term is
replaced by e2t ModF0(α).

We also want the analogue of Theorem 5.11. If α is vertical, then
TwGt(ν−, α) is undefined. However, we have

Theorem 5.13. If α is extremely short in Gt, and if α is vertical then

TwGt(ν
+, α) = O

(
1

lGt(α)

)
,

while if α is horizontal then

TwGt(ν
−, α) = O

(
1

lGt(α)

)
.

Proof. If α is vertical, the q-twist twq(ν+, α) in Ft(α) vanishes, while if α
is horizontal, then twq(ν−, α) = 0. The result follows from Lemma 5.6 and
Proposition 5.7. �

6 Short Curves along Lines of Minima

In this section we prove Theorem B, stated more precisely as Theorem 6.1,
which gives our combinatorial estimate for the length of a curve which
becomes extremely short at some point along the line of minima L(ν+, ν−).
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We also estimate the twist of ν± around α in Theorem 6.2. This will form
the basis for our comparison of the metrics Lt and Gt. It turns out that,
in a close parallel to the case of the Teichmüller geodesic, there are two
reasons why a curve can be extremely short: either the relative twisting of
ν+, ν− about α is large, or one or other of the pants curves in a pair of
pants adjacent to α in a short marking of Lt has large intersection with
either ν+ or ν−.

More precisely, suppose that α is an extremely short curve in Lt and let
PLt be a short pants system in Lt, which necessarily contains α. Define

Ht(α) = sup
β∈B

lqt(β)
lqt(α)

, (12)

where B is the set of pants curves in PLt which are boundaries of pants
adjacent to α, and qt is the quadratic differential metric of area 1 (on
the corresponding surface Gt) whose horizontal and vertical foliations are
respectively, ν+

t and ν−t .
Let Dt(α) be as in equation (10). Our main estimates are

Theorem 6.1. Let α be a curve on S which is neither vertical nor
horizontal. If α is extremely short in Lt, then

1
lLt(α)

�max
{
Dt(α),

√
Ht(α)

}
.

Theorem 6.2. With the same hypotheses as Theorem 6.1, the twist
satisfies

TwLt(ν
+, α) = O

(
1

lLt(α)

)
if t ≥ tα ,

TwLt(ν
−, α) = O

(
1

lLt(α)

)
if t ≤ tα .

To prove Theorems 6.1, 6.2, we note that since the surface Lt is on the
line of minima, we have at the point Lt,

dl(ν+
t ) + dl(ν−t ) = 0 . (13)

The pants curves in PLt (together with seams) define a set of coordinates
(lσ(α), τα(σ)) on T (S) as explained in section 4.2, which in turn define
infinitesimal twist ∂/∂τα and length ∂/∂l(α) deformations for α ∈ PLt .
Theorems 6.1 and 6.2 will follow from the relations we get by applying
equation (13) to ∂/∂τα and ∂/∂l(α). For ∂/∂τα, we use the well-known
formula of Kerckhoff [Ke2] and Wolpert [W1], while for ∂/∂l(α) we use the
analogous formula for the length deformation derived in [S1].
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6.1 Differentiation with respect to twist. Suppose as above that α
is an extremely short curve in Lt. If we apply equation (13) to ∂/∂τα, the
derivative formula in [Ke2] and [W1] gives

0 =
∂l(ν+

t )
∂τα

+
∂l(ν−t )
∂τα

=
∫

α
cos θ+dν+

t +
∫

α
cos θ−dν−t ,

where θ± is the function measuring the angle from each arc of |ν±t | to α.
Assume that α is neither vertical nor horizontal, so that neither i(ν+, α)
nor i(ν−, α) is zero. Then we may define the average angle Θ±

t by

cos Θ±
t =

1
i(ν±t , α)

∫

α
cos θ±dν±t .

Setting T = t− tα, the preceding two equations give

eT cos Θ+
t + e−T cos Θ−

t = 0 . (14)

If a particular leaf L of a lamination |ν| cuts α at an angle θ at a point p,
then from the definition of the twist (see section 4.1) and simple hyperbolic
geometry we have

cos θ = tanh
twLt(L,α, p)lLt(α)

2
.

Since the twists twLt(L,α, p) for different leaves L differ by at most 1, if α
is sufficiently short we obtain the estimate

|cos θ − cos Θ±
t | = O

(
lLt(α)

)
, (15)

from which we deduce that either cos Θ±
t and twLt(ν±, α) have the same

sign, or that |cos Θ±
t | = O(lLt(α)) so that |twLt(ν±, α)| = O(1).

Note also that equation (14) implies that ν+, ν− twist around α in
opposite directions and that the lamination whose weight on α is smaller
does more of the twisting.

6.2 Differentiation with respect to length. For the length defor-
mation, we shall apply the extension of the Wolpert formula derived in [S1],
which gives a general expression for dl(ζ), for ζ ∈ S, with reference to a
pants curves system P. Let α̃1, . . . , α̃n be the lifts of the pants curves in P
successively met by ζ, where the segment of the lift ζ̃ of ζ between α̃1 and
α̃n projects to one complete period of ζ. Let dj be the length of the com-
mon perpendicular πj between α̃j , α̃j+1 and let Sj be the signed distance
between πj−1 and πj along α̃j , where the sign is positive if the direction
from πj−1 to πj coincides with the orientation of αj. (Note that if α̃j and
α̃j+1 project to the same curve α and if α is adjacent to two distinct pairs
of pants, then πj projects to an arc perpendicular to α that is not a seam.)
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Then equation (3) of [S1] states that

dl(ζ) =
n∑

j=1

coshuj ddj +
n∑

j=1

cos θj dSj , (16)

where θj is the angle from ζ̃ to α̃j measured counter-clockwise and uj is
the complex distance from ζ̃ to the complete bi-infinite geodesic which
contains πj. Replacing sums by integrals, we see that this formula, derived
in [S1] for closed curves, pertains equally to a measured lamination.

In our case, we take P to be PLt and apply this formula to ∂/∂l(α) for
α ∈ PLt. The non-zero contributions will be from terms dSj corresponding
to lifts of α, and from two types of terms ddj: those corresponding to
perpendiculars with endpoints on lifts of α, and those corresponding to
perpendiculars which do not intersect any lift of α, but whose projections
are contained in a common pair of pants with α.

We first estimate the contribution from the terms ddj . Suppose as above
that PLt is a short pants decomposition for Lt. Let P be a pair of pants
in S \ PLt that has α as a boundary component. The geometry of P is
completely determined by the lengths of the three boundary curves α, β, γ.
A common perpendicular joining two (not necessarily distinct) boundary
components of P may or may not have one of its endpoints on a boundary
curve which projects to α on S. We say that the common perpendiculars
of the first kind are adjacent to α, while those of the second type are not.
The terms ddj are estimated by the following lemma which is proved in the
Appendix:
Lemma 6.3. Suppose that α is extremely short in Lt and let P be a pair
of pants in S \ PLt that has α as a boundary component. Let v denote
the length of a common perpendicular adjacent to α, and let w denote the
length of a common perpendicular not adjacent to α. Then

∂v

∂l(α)
∗� − 1

l(α)
and

∂w

∂l(α)
∗� l(α) ,

where the partial derivatives are taken with respect to the coordinates
(l(α), τα)α∈PLt

.

We remark that the first of these estimates coincides with the heuris-
tic computation that since the collar around α has length comparable to
log[1/l(α)], the derivative should be approximately −1/l(α).

We also need to bound the coefficient cosh uj of ddj in equation (16).
Notice that the bound applies to all the pants curves (not just the extremely
short ones) in a short marking.
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Lemma 6.4. If the pants curves system P is short, then for all j,

|coshuj |
∗� 1 .

Proof. Since P is short, by definition all curves αj have length bounded
above, and hence the length dj of the common perpendicular πj to α̃j , α̃j+1

is bounded below.
First suppose that ζ̃ intersects the infinite geodesic π̂j that contains πj .

In this case, uj = iφj , where φj is the angle between ζ̃ and π̂j at their inter-
section point o. Consider the case when o is contained in the segment πj .
Let xj be the distance between o and the endpoint oj of πj that lies on α̃j .
Since ζ̃ intersects both α̃j and α̃j+1, the angle of parallelism formula gives

|tan φj | < 1/ sinhxj and |tan φj| < 1/ sinh(dj − xj) .

Since at least one of xj and dj − xj is bounded below, this gives a uniform
upper bound on |tan φj|. Thus φj is uniformly bounded away from π/2 and
|cosh uj| = |cosφj| is bounded below by a universal positive number.

Now consider the case when o lies outside of πj. Let o′j, o
′
j+1 denote

respectively, the points of intersection between ζ̃j and α̃j , α̃j+1 and let oj ,
oj+1 denote respectively, the points of intersection between πj and α̃j, α̃j+1.
If d(o, oj) ≥ d(o, oj+1), then replace ζ̃ with the geodesic ζ̃ ′ that passes
through o′j and oj+1 and if d(o, oj) ≤ d(o, oj+1), then replace ζ̃ with the
geodesic ζ̃ ′ that passes through o′j+1 and oj. The angle φ′j of intersection
between ζ̃ ′ and πj satisfies |cos φj| > |cosφ′j |. We now run the preceding
argument with ζ̃ ′ in place of ζ̃ to conclude |cosφ′j| is bounded below.

Now, suppose that ζ̃ does not intersect π̂j . Then uj is the hyperbolic dis-
tance from ζ̃ to π̂j. Denote by p the point where the common perpendicular
from ζ̃ to π̂j meets π̂j; this point may lie outside the segment πj between
α̃j , α̃j+1. Let yj, y

′
j denote the (unsigned) distances from p to α̃j , α̃j+1 re-

spectively. The quadrilateral formula gives sinh yj sinhuj = |cos θj| and
sinh y′j sinhuj = |cos θj+1|, where θj, θj+1 are the angles between ζ̃ and
α̃j , α̃j+1 respectively. Whether or not p ∈ πj , at least one of yj and y′j is
bounded below by dj/2. Since there is a uniform lower bound on dj , it
follows that |sinhuj| and hence |cosh uj | is uniformly bounded above. The
result follows. �

We now consider the second sum in equation (16).

Lemma 6.5. Let α̃j be a lift of the curve α along which the curve ζ has
shift coordinate Sj = Sj(ζ). Then
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∂Sj

∂l(α)
= twLt(ζ, α) − sα(Lt) ±O(1) ,

where sα(Lt) is the Fenchel–Nielsen twist along α at Lt as defined in
section 4.2.

Proof. Homotope the lift ζ̃ to the piecewise geodesic path ζ̂ that runs along
the successive lifts α̃i and common perpendiculars πi. The projection of
ζ̂ to S is homotopic to ζ. Then Sj(ζ) equals the signed distance that ζ̂
travels along α̃j. We need to express this shift in a usable form.

Recall the definition of Fenchel–Nielsen twist coordinates from sec-
tion 4.2. As above, we denote the pants curves in a short marking for
Lt by α1, . . . , αk. The curve α̃j forms the boundary of the lifts of two,
possibly coincident, pairs of pants Pj and Pj+1. The projection α̂j of α̃j to
Pj is bisected by the endpoints of the two seams of Pj which join α̂j to each
of the other two boundaries of Pj (before identification in the surface S).
Likewise the projection α̂′

j of α̃j to Pj+1 is bisected by the endpoints of
exactly two seams of Pj+1.

The zero twist surface σ0 = σ0(lα1 , . . . , lαk
) is formed by gluing Pj to

Pj+1 along α̂j and α̂′
j in such a way as to match these two pairs of points.

Thus on σ0, the distance along α̃j between incoming and outgoing per-
pendiculars πj and πj+1 may be expressed in the form nj(ζ)l(α)/2 + ej(ζ),
where nj(ζ) ∈ Z is the (signed) number of seams ζ̂ intersects along α̃j and
ej(ζ) is an error term which allows for the possibility that πj , πj+1 may not
be seams of Pj and Pj+1, but rather common perpendiculars from α̂j or α̂′

j

to itself. In all cases however, |ej(ζ)| < lσ(αj) and ej(ζ) depends only on
the geometry of Pj and Pj+1, see [S1].

Now at Lt, the incoming and outgoing perpendiculars πj and πj+1 are
further offset by ταj(Lt) = lLt(α)sαj (Lt) giving the formula

Sj(ζ) = 1
2nj(ζ)lLt(α) + ej(ζ) + ταj (Lt) ,

see also section 4.2 of [S1].
We can now proceed to estimate ∂Sj/∂l(α). Since the partial deriva-

tives are taken with respect to the coordinates (lσ(α), τα(σ)), the term
∂ταj/∂l(α) vanishes. To avoid an unpleasant calculation, we get rid of the
term ej(ζ) as follows. Modify ζ̂ to a path which still runs along the lifts of
the pants curves and their common perpendiculars, but which never goes
along a perpendicular from a lift of α to itself. Specifically, let πj be such
a common perpendicular which projects to a pair of pants P one of whose
boundary components is α. Let β be one of the other boundary compo-
nents and let η be the perpendicular from α to β. The projection of πj to
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P is homotopic, with fixed endpoints, to an arc which runs along α, then
along η, then along β, back along η, finally back to the final point on α,
see Figure 3. Modify ζ̂ by replacing πj by the lift of this alternate path.

�

�

�

Figure 3: Homotoping the perpendicular.

Doing this in each instance gives a replacement for ζ̂, with respect to which
one can define all quantities occurring in (16) as before. The derivation of
equation (16) in [S1] will still work for this new path. Denoting the newly
defined shift also by Sj, we thus have ∂Sj/∂l(α) = nj/2 ± 1.

We claim that nj/2 = twσ0(ζ, α)±O(1). By definition, ζ̂ traverses lifts
of the pants curves to H in the same order as ζ̃. Thus the segment of ζ̂
running along the lift α̃ = α̃j to H is the interval between the footpoints
Qj, Qj+1 of the perpendiculars πj and πj+1 from α̃j−1 and α̃j+1 (the lifts
of pants curves adjacent to α̃j) to α̃j . Now Qj lies within the interval on
α̃j bounded by the footpoints of the perpendiculars from the two endpoints
of α̃j−1 on ∂H to α̃j ; and similarly for Qj+1. Thus our claim follows as in
[Mi3, Lem. 3.1], see the discussion in section 4.1. The proof of the present
lemma can now be completed by applying Lemma 4.1. �

We can now put the above results together to obtain an estimate of
∂l(ν)/∂l(α). Let {πj}j∈J be the subset of perpendiculars whose projections
are contained in a common pair of pants with α but are disjoint from α.
Then by Lemmas 6.3(ii) and 6.4, we have

∑

j∈J

cosh uj
∂dj

∂l(α)
∗�

∑

j∈J

∂dj

∂l(α)
∗�

∑

j∈J

l(α) .

In the case that we have a measured lamination ν instead of a curve ζ, we
obtain by the same reasoning

∑

j∈J

cosh uj
∂dj

∂l(α)
∗�

∑

j∈J

l(α) · wν(πj) ,

where wν(πj) is the ν-weight of the leaves of ν̃ that go from α̃j to α̃j+1.
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Let us denote
∆ν(α) =

∑

j∈J

wν(πj) . (17)

By applying equation (15) and Lemmas 6.3 – 6.5 to equation (16), we obtain
the following:
Lemma 6.6. Let α be a curve in a short pants decomposition PLt

of Lt and let ν be a measured lamination transverse to α, with aver-
age intersection angle Θ. If α is extremely short and neither horizontal
nor vertical, then using coordinates (l(αi), ταi) relative to PLt, we have
∂l(ν)/∂l(α) = −A+B + C, where

A
∗� i(ν, α)

1
l(α)

, B
∗� ∆ν(α)l(α) and

C
∗� i(ν, α)

(
(twLt(ν, α) − sα(Lt)) cos Θ +O(1)

)
.

6.3 Proof of the main estimates. We are ready to prove our main
results Theorems 6.1 and 6.2. If we apply equation (13) to ∂/∂l(α), then
by Lemma 6.6, we obtain

0 =
∂l(ν+

t )
∂l(α)

+
∂l(ν−t )
∂l(α)

= −(A+ +A−) +B+ +B− + C+ + C−, (18)

where

A± ∗� i(ν±t , α)
l(α)

, B± ∗� ∆ν±
t
(α)l(α) and

C± ∗� i(ν±t , α)
(
(twLt(ν

±, α) − sα(Lt)) cos Θ±
t +O(1)

)
.

Since A+ +A− = B+ +B− +C+ + C−, we get
1
l(α)

∗�
∆ν+

t
(α) + ∆ν−

t
(α)

i(ν+
t , α) + i(ν−t , α)

l(α) +
C+ + C−

i(ν+
t , α) + i(ν−t , α)

. (19)

Notice that the term C+ + C− simplifies: defining
D± = C± + i(ν±t , α)sα(Lt) cos Θ±

t ,

it follows immediately from equation (14) that C+ + C− = D+ +D−.
Lemma 6.7. Let Ht(α) be defined as in equation (12). Then we have

Ht(α) �
∆ν+

t
(α) + ∆ν−

t
(α)

i(ν+
t , α) + i(ν−t , α)

.

Proof. The strands of ν±t which intersect pants adjacent to α but which are
disjoint from α, must intersect one of the curves in B. Hence, by definition
of ∆ν±

t
(α), we have

∆ν+
t
(α) + ∆ν−

t
(α)

i(ν+
t , α) + i(ν−t , α)

≺
∑

β∈B

lqt(β)
lqt(α)

∗� Ht(α) .
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To prove the inequality in the other direction, let β ∈ B be the curve
that realizes the maximum in the definition of Ht(α). For ν = ν±t , let
νβα, νββ , νβγ be the collections of strands of ν that run between β and α,
from β to itself, and between β and γ, respectively. (As usual, there are
different possible configurations of strands in each pants, in particular νββ

may be empty. The inequalities which follow are however valid in all cases.)
Denote the ν-weight of these by w(νβα), w(νββ), and w(νβγ), respectively.
Then

Ht(α) =
lqt(β)
lqt(α)

∗�
∑

I=+,−

w(νI
βα) + w(νI

ββ) +w(νI
βγ)

lqt(α)

≺
∑

I=+,−

w(νI
ββ) + w(νI

βγ)
lqt(α)

≺
∆ν+

t
(α) + ∆ν−

t
(α)

i(ν+
t , α) + i(ν−t , α)

. �

Proof of Theorem 6.1. Lemma 6.7, equation (19), and the remark following
gives 1/lLt(α) � Gt +HtlLt(α), where Ht = Ht(α) and

Gt = Gt(α) =
D+ +D−

i(ν+
t , α) + i(ν−t , α)

.

Hence, we must have either
1

lLt(α)
� Gt or

1
lLt(α)

� HtlLt(α) ,

from which we obtain
1

lLt(α)
� max

{
Gt,

√
Ht

}
.

We simplify the expression for Gt as follows. By the discussion fol-
lowing equation (15) we see that either twLt(ν+, α) cos Θ+

t is positive, or
|twLt(ν+, α) cos Θ+

t | = O(1), and likewise for ν−. Also note that twLt(ν+, α)
and twLt(ν−, α) are either O(1) or have opposite signs, so that

dα(ν+, ν−) = TwLt(ν
+, α) + TwLt(ν

−, α) ±O(1) .

As before, let T = t− tα. Then by applying equation (14), we get

Gt(α) =
eT |cos Θ+

t |TwLt(ν+, α) + e−T |cos Θ−
t |TwLt(ν−, α)

eT + e−T
+O(1)

� eT |cos Θ+
t |dα(ν+, ν−)

eT + e−T
=
e−T |cos Θ−

t |dα(ν+, ν−)
eT + e−T

. (20)

This almost completes the proof, except it remains to be shown that if
1/lLt(α) � Gt, then

Gt � e−2|t−tα|dα(ν+, ν−) .
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By equation (20), it is sufficient to show that there is some constant c > 0,
independent of α, such that |cos Θ−

t | > c whenever T > 0 and |cos Θ+
t | > c

whenever T < 0.
Our assumption that 1/lLt(α) � Gt and the fact that lLt(α) is suffi-

ciently small, together with equation (20) imply that
1

lLt(α)
∗≺ TwLt(ν

−, α) + TwLt(ν
+, α) .

Let Xt = TwLt(ν−, α)lLt(α) and Yt = TwLt(ν+, α)lLt(α). The above in-
equality states that

Xt + Yt
∗� 1 . (21)

If T > 0, then by equation (14), |cos Θ−
t | > |cos Θ+

t | so Xt > Yt−O(lLt(α))
by equation (15). Thus, reducing the value of the upper bound ε0 on lLt(α)
if necessary, it follows from equation (21) that Xt is bounded below by some
positive constant, and thus the same is true of |cos Θ−

t |. The analogous
statement holds for | cos Θ+

t | when T < 0. �

Proof of Theorem 6.2. From equation (14), |cos Θ±
t | ≤ e−2|T |. It follows

from equation (15) that if T � 0 then

TwLt(ν
+, α) lLt(α) ≺ e−2T .

The argument for T � 0 is similar. Now suppose that |T | = O(1). Since

TwLt(ν
±, α) lLt(α) ≺ dα(ν+, ν−) lLt(α)

and since by Theorem 6.1,

dα(ν+, ν−) lLt(α) ≺ e2|T |,

the result follows. �

6.4 Estimates for horizontal and vertical short curves on L. As
in section 5.6, we need the analogue of Theorems 6.1 and 6.2 for extremely
short curves α which are either horizontal or vertical. As in that section,
assume α is vertical so that i(α, ν−) = 0.

As before, we shall obtain the estimates by applying equation (13) to
∂/∂τα, ∂/∂l(α). Since α is vertical,

0 =
∂l(ν+

t )
∂τα

+
∂l(ν−t )
∂τα

=
∂l(ν+

t )
∂τα

=
∫

α
cos θ+dν+

t .

Hence equation (14) is replaced by cos Θ+
t = 0. Furthermore, equation (15)

gives |twLt(ν+, α)| = O(1).
Let m−(α) be the weight on α of ν− = ν−0 , in other words, ν− =

m−(α)α+ η, where η has support disjoint from α. Then following the line
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of discussion in section 6.2, it is easy to check that
∂l(ν−t )
∂l(α)

= e−tm−(α) + ∆ν−
t
(α)l(α) .

Hence, in place of equation (18), we obtain

0 =
∂l(ν+

t )
∂l(α)

+
∂l(ν−t )
∂l(α)

= −A+ +B+ + C+ + e−tm−(α) +B−,

where A+, B±, C+ are defined as before. Since
C+ ∗� i(ν+

t , α)
[
(twLt(ν, α) − sα(Lt)) cos Θ+

t +O(1)
] ∗� i(ν+

t , α) ,

we get
1

lLt(α)
� Ht(α)lLt(α) +

e−tm−(α)
i(ν+

t , α)
= Ht(α)lLt(α) + e−2t m

−(α)
i(ν+, α)

.

Thus we obtain
Theorem 6.8. Let α be a curve which is vertical on S. If α is extremely
short in Lt, then

1
lLt(α)

�max
{
e−2t m

−(α)
i(ν+, α)

,
√
Ht(α)

}
.

If α is horizontal, the estimate is the same except that the first term is
replaced by e2tm+(α)/i(ν−, α), where now m+(α) is the weight on α of ν+.

Theorem 6.9. If α is extremely short in Lt, then the twist satisfies
TwLt(ν+, α) = O(1) if α is vertical and TwLt(ν−, α) = O(1) if α is hori-
zontal.

7 Comparing Lt and Gt

In this section we prove our final results. We compare the geometry of Lt

and Gt by looking at their respective thick-thin decompositions. Specifi-
cally, we prove that

Ht(α) � Kt(α) . (22)

Combined with Theorems 5.10 and 6.1, this completes the proof of Theo-
rems C and A. We show further in Theorem 7.10 that on corresponding
thick components, the two metrics Lt and Gt almost coincide. Combining
this with the information about twisting given in Theorems 5.11 and 6.2,
we can then estimate the Teichmüller distance between Lt and Gt, thus
completing the proof of Theorem D (Theorem 7.15).

As explained in the Introduction, the logical flow in the proof of equation
(22) is not straightforward. We first show relatively easily in Proposition 7.1
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that Ht(α) � Kt(α). The key point in proving the other half of equation
(22) is Proposition 7.4, which shows that the metric Lt not only minimizes
lσ(ν+

t ) + lσ(ν−t ), but that it also in a suitable coarse sense minimizes the
contribution to the sum made by the parts of ν±t which lie in the thick part
of Lt. This is proved in section 7.2. In section 7.3 we use Proposition 7.4 to
deduce that a curve that is extremely short in Gt is also extremely short in Lt

(Proposition 7.8). This is used in proving Theorem 7.10 mentioned above,
from which in section 7.4 we are finally able to show that Ht(α) ≺ Kt(α)
(Proposition 7.12).

7.1 Curves are shorter in L(ν+, ν−).

Proposition 7.1. If α is extremely short in Gt, then Ht(α) � Kt(α).
Therefore,

1
lLt(α)

� 1
lGt(α)

.

Proof. Once we show that Ht(α) � Kt(α), the second statement follows
from Theorems 5.10 and 6.1.

The only case of interest is when Kt(α) is large. Let Et(α) be one of
the expanding annuli Ei(α) around α of larger modulus, defined as in the
discussion preceding Corollary 5.4. Denote the inner and outer boundary
curves of Et(α) by ∂0 and ∂1. Let ω be an essential arc from α to itself
such that lqt(ω) = 2dqt(∂0, ∂1), where as usual dqt denotes distance in the
qt-metric. The annulus Et(α) intersects the qt-representative Ŷ of a thick
component Y of (S,Gt) adjacent to α. Let us first suppose that ω is con-
tained in Ŷ . A small regular neighborhood of α∪ω has boundary consisting
of α and two curves, ζ1, ζ2, which together with α bound a pair of pants.
Therefore, either both ζ1 and ζ2 are contained in B or one of these two
curves must intersect a curve in B transversely. (As in equation (12), B
is the set of pants curves in a short pants decomposition PLt which are
boundaries of pants adjacent to α.)

First consider the case when ζ1, ζ2 ∈ B. If either ζ1 or ζ2 is non-
peripheral in Y , then by definition of Ht(α) and λY ,

Ht(α) = max
β∈B

{
lqt(β)
lqt(α)

}
≥ max

{
lqt(ζ1)
lqt(α)

,
lqt(ζ2)
lqt(α)

}
≥ λY

lqt(α)
.

If both ζ1, ζ2 are peripheral in Y , then

Ht(α) � lqt(ζ1) + lqt(ζ2) + lqt(α)
lqt(α)

� λY

lqt(α)
. (23)
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Now consider the case when either ζ1 or ζ2 intersects a curve β ∈ B
transversely. Note that, for i = 1, 2,

lqt(ζi) ≤ lqt(ω) + lqt(α) ≤ 4 diamqt(Ŷ ) ∗� λY .

Suppose that β intersects ζi and that ζi is not peripheral in Y . Then it
follows from the above inequality and the definition of λY that lqt(ζi)

∗� λY .
Since by Theorem 5.5 we have lqt(ζi)

∗� λY lGt(ζi), we see that lGt(ζi)
∗� 1.

Then, by the collar lemma for quadratic differentials [R1], we have

lqt(β)
∗� lqt(ζi)

∗� λY .

The only remaining possibility to consider is when both ζ1, ζ2 are peripheral
so that Y is a pair of pants. If β intersects ζi, then since β must pass through
an annulus around ζi which has large modulus, we conclude lqt(β) � lqt(ζi).
If β does not intersect ζi, every arc η of β ∩ Ŷ has both endpoints on the
other curve ζj, j �= i. The endpoints of η divide ζj into two arcs, one
of which together with η forms a curve homotopic to ζi. Since β passes
through an annulus of large modulus around ζj , this implies

lqt(ζi) ≤ lqt(η) + lqt(ζj)
∗≺ lqt(β) + lqt(β) .

Either way, we have lqt(β)
∗� lqt(ζi) and thus lqt(β)

∗� lqt(ζ1) + lqt(ζ2).
Finally, if the original arc ω was not contained in Ŷ , we can replace it

with an arc that is contained in Ŷ of comparable length as in the proof of
Theorem 5.9, and run the same argument. �

7.2 Length estimates on subsurfaces. The object of this section is
to prove Proposition 7.4. We begin with estimates that are necessary to
analyze the contribution to the length of a lamination associated to the
thick part of the surface S. Thus if (S, σ) is a hyperbolic surface and
Y ⊂ S is a subsurface of the thick part, we want to find an approximation
to lσ(ν± ∩ Y ). To consider the problem in general, we consider lσ(ν± ∩Q)
for a subsurface Q with geodesic boundary. Suppose that ζ is a geodesic
that intersects Q but is not entirely contained in Q. The essential idea is
that we can approximate ζ ∩ Q by piecewise geodesic arcs homotopic to
ζ ∩ Q, which alternately run along arcs perpendicular to ∂Q and parallel
to ∂Q. The length of the parallel portion is determined by the twisting
of ζ about the curves in ∂Q, while the portion ζQ perpendicular to ∂Q is
defined and estimated as explained below.

Let α be a collection of disjoint simple closed geodesics on (S, σ) and
let Q be a totally geodesic surface which is the metric completion of a
component of S \ α. (It is possible for two distinct boundary components
of Q to be identified in S to a single curve α ∈ α, so strictly speaking,
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Q is not a subsurface of S.) If η is an essential geodesic arc with endpoints
on ∂Q, let ηQ be the shortest arc in Q that is freely homotopic to η,
relative to ∂Q. In this case, clearly ηQ is orthogonal to ∂Q. If ϕ is a
measured geodesic lamination whose support is entirely contained in Q, let
ϕQ = ϕ. For convenience we allow the possibility that the support of ϕ
contains components of ∂Q, remarking that this is not quite the same as
the definition in [Mi3].

Suppose ξ is a measured geodesic lamination on S. Then the intersection
ξ ∩ Q is a union of components of ξ that are entirely contained in Q and
arcs with both endpoints on ∂Q. If η is an arc of ξ ∩ Q, let n(ηQ) denote
the transverse measure of arcs in the homotopy class [ηQ]. The orthogonal
projection of ξ into Q is ξQ =

∑
n(ηQ)ηQ +

∑
ϕQ, where the first sum

is taken over a representative ηQ from each class of arcs in ξ ∩ Q and the
second sum is taken over all components ϕ of ξ that are entirely contained
in Q. Define

lσ(ξQ) =
∑

n(ηQ)lσ(ηQ) +
∑

lσ(ϕQ) .

If all curves in ∂Q are of uniformly bounded length, then we have the
following estimate of lσ(ξ ∩Q) in terms of ξQ and Twσ(ξ, α):

Lemma 7.2. Suppose lσ(αj) < � for every component αj of ∂Q. Then
there exists a constant K = K(�) such that, for any measured lamination
ξ on S,∣∣

∣∣lσ(ξ ∩Q) −
[
lσ(ξQ) +

∑
lσ(αj)

Twσ(ξ, αj)
2

i(ξ, αj)
]∣∣
∣∣ ≤ Ki(ξ, ∂Q) ,

where the sum is taken over all αj that intersect ξ transversely.

For a proof, see the Appendix. The next lemma can be proved similarly,
applying the same property of hyperbolic triangles. We omit the proof.

Lemma 7.3. Suppose lσ(α) < ε0. Let A be an embedded annulus in
(S, σ) such that one component of ∂A is the geodesic α and the other
a hyperbolically equidistant curve of length ε0. Then there is a uniform
constant K such that, for any measured lamination ξ on S that intersects
α transversely,∣

∣∣
∣lσ(ξ ∩A) −

[
log

1
lσ(α)

+ lσ(α)
Twσ(ξ, α)

2

]
i(ξ, α)

∣
∣∣
∣ ≤ Ki(ξ, α) .

Here, log[1/lσ(α)] approximates the width of A, up to a bounded addi-
tive error.

We will now apply Lemmas 7.2 and 7.3 to prove Proposition 7.4 below,
which in turn is the key step to proving Theorem 7.10.



Vol. 18, 2008 LINES OF MINIMA AND TEICHMÜLLER GEODESICS 737

For ρ > 0, and a hyperbolic metric σ ∈ T (S), define
Sρ(σ) =

{
α ∈ S : lσ(α) < ρ

}
.

Proposition 7.1 implies that if α is extremely short in Gt, then we can
choose a constant ε < ε0, depending only on ε0, such that if lGt(α) < ε,
then lLt(α) < ε0. In other words, we can choose ε < ε0 so that

Sε(Gt) ⊂ Sε0(Lt) . (24)
Now, let Q = Qt be a component of S \Sε(Gt). The metric Lt naturally

endows Q with the structure of hyperbolic surface with geodesic bound-
ary, which by the above, satisfies lLt(α) < ε0 for all components α of ∂Q.
Henceforth, fix a constant c that satisfies ε0 < c < εM. For σ = Gt,Lt,
or in general, any metric that makes Q a hyperbolic surface with geodesic
boundary components that are extremely short, define C(α, σ) to be the
collar of α in (Q,σ) such that one component of ∂C(α) is (the geodesic
representative of) α, and the other, the equidistant curve of length c. Be-
cause c < εM, the collars are all disjoint from one another. Let (QT , σ) be
the metric subsurface of Q defined by

(QT , σ) = (Q,σ)
∖ ∐

α∈∂Q

C(α, σ) .

In particular, every component of ∂QT has length c.
Since Lt is on the line of minima, we have

lLt(ν
+
t ) + lLt(ν

−
t ) ≤ lGt(ν

+
t ) + lGt(ν

−
t ) .

The contribution to this inequality from QT is given as follows:
Proposition 7.4. If Q is a component of S \ Sε(Gt), then

lLt(ν
+ ∩QT ) + lLt(ν

− ∩QT )
∗≺ lGt(ν

+ ∩QT ) + lGt(ν
− ∩QT ) .

To prove Proposition 7.4, we need the following two lemmas.
Lemma 7.5. Suppose (Q,σ) is a hyperbolic surface with geodesic bound-
ary such that lσ(α) < ε0 for all α ∈ ∂Q. Then for any measured geodesic
lamination ξ on (S, σ), we have

lσ(ξ ∩QT ) ∗� lσ(ξQ ∩QT ) .
Proof. We consider lσ(ξ ∩ QT ) = lσ(ξ ∩ Q) − lσ(ξ ∩

∐
C(α)) and apply

Lemmas 7.2, 7.3 to the right-hand side. The proof is completed by observing
that

lσ(ξQ ∩QT ) = lσ(ξQ) −
∑

α∈∂Q

log
1

lσ(α)
i(ξ, α) +O

(
i(ξ, ∂Q)

)

and that lσ(ξ ∩ QT )
∗� i(ξ, ∂QT ) = i(ξ, ∂Q), due to the fact that every

component of ∂QT has an annular neighborhood of definite width. �
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Lemma 7.6. Suppose that (Q,σ) and (Q,σ′) are two hyperbolic sur-
faces with geodesic boundary whose boundary components are all extremely
short. Suppose that there is a short pants decomposition of (Q,σ) with re-
spect to which the Fenchel–Nielsen coordinates for (Q,σ) and (Q,σ′) agree,
except possibly for the lengths and twists corresponding to components
of ∂Q. Then, for any simple closed curve or arc η with endpoints on ∂Q,

lσ(ηQ ∩QT ) ∗� lσ′(ηQ ∩QT ) .

Proof. This is essentially the same as a discussion in Minsky [Mi3, p. 283].
The idea is that there is aK-bilipschitz homeomorphism (QT , σ) → (QT , σ

′)
with constant K depending only on ε0. To see this, cut Q along the pants
curves into pairs of pants and further cut each pair of pants into hexagons.
Corresponding hexagons in the two surfaces have the same side lengths,
except those whose edges form part of ∂Q. Now truncate those hexagons
which have an edge on ∂Q by cutting off the collar round ∂Q in such a way
that the boundary of the truncated hexagon is the corresponding compo-
nent of ∂QT . By our construction, the non-geodesic edges of the hexagons
in the two surfaces are both equidistant curves of the same length c/2.

We define the required map piecewise from each possibly truncated
hexagon in (QT , σ) to the corresponding one in (QT , σ

′). Since all the
Fenchel–Nielsen coordinates agree in the interior of QT , we only have to see
that there is a bilipschitz map between the truncated parts of two hexagons
H and H ′ with alternate sidelengths l1, l2, l3 and l′1, l2, l3 coming from the
pants curves, where l1, l′1 < c/2. Since l2, l3 are uniformly bounded above
and below, the distance between the corresponding sides in both hexagons
is also uniformly bounded above and below, see the proof of Lemma 3.3.
The distance between the side of length l1 and the equidistant curve of
length c/2 is equal to log[c/2l1], up to a bounded additive error. Hence
by Lemma 3.3, the distances between the sides of lengths l2, l3 and the
equidistant curve of length c/2 are bounded above, while they are bounded
below by choice of c.

It is now easy to define a bilipschitz homeomorphism between the trun-
cations of H and H ′. For example, fix a point O whose distance from all
sides of H is uniformly bounded above and below and divide H into six
triangles by joining O to the vertices of H. Note that if we are given two
hyperbolic triangles whose side lengths are uniformly bounded above and
below, we can map the three sides linearly to each other and then extend
to a uniformly bilipschitz map on the interiors. We can do the same even
when one side is an equidistant curve rather than a geodesic. Now define
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the required map from H to H ′ triangle by triangle making it agree on the
edges joining O to the vertices of H. It is clear that the resulting bound
on K depends only on the initial upper bound on the lengths of the pants
curves. Note also that K → 1 as ε0 → 0. �

We may assume that in the definition of the truncated surfaces QT ,
the constants ε0 and c are chosen small enough that any non-peripheral
simple geodesic loop contained in (Q,σ) is completely contained in QT .
In particular, if Pσ is a short-pants system for σ and if β ∈ Pσ \ ∂Q is
contained in QT , then so is its dual δβ. Let Mσ be the short marking of
σ associated to Pσ. We call the subset of Mσ thus defined, the restriction
Mσ|Q of Mσ to Q [MaM2]. Equivalently, Mσ|Q is the set of curves in Mσ

that are completely contained in Q and are non-peripheral in Q. If Q is a
pair of pants then Mσ|Q is empty.

Proof of Proposition 7.4. Where convenient, we drop the subscript t.
Since Q is a component of S \ Sε(Gt), the curves in ∂Q are included in
the set of pants curves in both ML and MG . Define a new metric τ = τt
on S interpolating Gt and Lt as follows. Let X be the metric completion
of S \ Q. First we choose a new pants system Pτ for S. The system Pτ

contains all the curves in ∂Q, in the interior of Q it consists of the pants
curves in MG |Q, while in the interior of X it consists of the pants curves
in ML|X . We define τt by specifying its Fenchel–Nielsen coordinates with
respect to Pτ . The metric τt will have the same Fenchel–Nielsen coordinates
associated to the pants curves in MG |Q as Gt and the same Fenchel–Nielsen
coordinates associated to the curves in ML|X ∪ ∂Q as Lt.

Since L is on the line of minima we have

lL(ν+
t ) + lL(ν−t ) ≤ lτ (ν+

t ) + lτ (ν−t ) . (25)

Let us estimate both sides of this inequality. Applying Lemma 7.2 to ν=ν±t ,
we obtain

lτ (ν ∩X) = lτ (νX) + 1
2

∑

α∈∂Q

lτ (α)i(α, ν)Twτ (ν, α) +O
(
i(ν, ∂Q)

)
,

lL(ν ∩X) = lL(νX) + 1
2

∑

α∈∂Q

lL(α)i(α, ν)TwL(ν, α) +O
(
i(ν, ∂Q)

)
.

By construction, lτ (νX) = lL(νX).
∣
∣lτ (ν ∩X − lL(ν ∩X)

∣
∣

≤ 1
2

∑

α∈∂Q

lτ (α)i(ν, α)
∣
∣Twτ (ν, α) − TwL(ν, α)

∣
∣ +O

(
i(ν, ∂Q)

)
.



740 Y.-E. CHOI, K. RAFI AND C. SERIES GAFA

By construction, the Fenchel–Nielsen twist coordinates for τ and L on
any component α of ∂Q coincide. Therefore, by Lemma 4.1, we have
|Twτ (ν, α) − TwL(ν, α)| ≤ 4. Thus

∣∣lτ (ν ∩X) − lL(ν ∩X)
∣∣ ≤ 2

∑

α∈∂Q

lτ (α)i(ν, α) +O
(
i(ν, ∂Q)

)
.

Substituting this into equation (25) and noting that we are working under
the assumption that all components α of ∂Q are extremely short in τ , we
obtain

lL(ν+
t ∩Q) + lL(ν−t ∩Q) < lτ (ν+

t ∩Q) + lτ (ν−t ∩Q) +O
(
lqt(∂Q)

)
.

Since every component of ∂Q is extremely short in τ , the collar lemma
implies that i(ν, ∂Q)

∗≺ lτ (ν ∩Q) so we may replace the last approximation
by

lL(ν+
t ∩Q) + lL(ν−t ∩Q)

∗≺ lτ (ν+
t ∩Q) + lτ (ν−t ∩Q) .

Since for σ = L, τ and ν = ν±t , we have by Lemma 7.5
lσ(ν ∩Q) = lσ(ν ∩QT ) + lσ

(
ν ∩ (Q \QT )

)

∗� lσ(νQ ∩QT ) + lσ
(
ν ∩ (Q \QT )

)
,

we can apply Lemma 7.3 to subtract the contribution of the collars forming
Q \QT from both sides to obtain

lL(ν+
Q ∩QT ) + lL(ν−Q ∩QT )

∗≺ lτ (ν+
Q ∩QT ) + lτ (ν−Q ∩QT ) .

To complete the proof, we apply Lemmas 7.5 and 7.6:
lτ (ν+

Q ∩QT ) + lτ (ν−Q ∩QT ) ∗� lG(ν+
Q ∩QT ) + lG(ν−Q ∩QT )

∗� lG(ν+
t ∩QT ) + lG(ν−t ∩QT ) . �

7.3 Correspondence between thick components. This section con-
tains the meat of our comparison between the geometries of Lt and Gt. We
show that (Corollary 7.9) the sets of short curves on Lt and Gt coincide.
Generalizing Theorem 3.8, we prove (Theorem 7.10 and Corollary 7.11)
that the geometries of the thick parts of Lt and Gt are close. As in that
proof, our strategy is to use short markings to estimate lengths. The main
point is to use Proposition 7.4 as a substitute for the length minimization
property of Lt.

We need the following result which generalizes Proposition 3.6 to thick
components.
Proposition 7.7. Assume that lσ(α) < ε0 for every component α of
∂Q. Let ρ > 0 and suppose that lσ(ζ) ≥ ρ for every non-peripheral simple
closed curve ζ in Q. Then for any simple closed geodesic γ on (S, σ),

lσ(γ ∩QT ) ∗� i(Mσ |Q, γ) , (26)
where the multiplicative constants depend only on ρ.
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Proof. By Lemma 7.5 it is sufficient to prove that
lσ(γQ ∩QT ) ∗� i(Mσ |Q, γ) .

We modify the argument in [Mi2, Lem. 4.7].
Notice that since QT is ρ-thick, it follows from Corollary 3.4 that the

lengths of all the curves in Mσ|Q are bounded above. Cutting QT along the
curves in Mσ|Q, we obtain a collection of convex polygons {Di}, together
with annuli {Aj}, where one boundary component ∂0Aj is a component of
∂QT , while the other component ∂1Aj is made up of arcs in Mσ|Q.

Since the total length of curves in Mσ|Q is uniformly bounded above,
the length of ∂Di is uniformly bounded above, and therefore, Di has uni-
formly bounded diameter. We claim that the annuli Aj also have uniformly
bounded diameter. Since the length of ∂0Aj is bounded below by ε0, an
area argument shows that the distance between ∂1Aj and ∂0Aj is uniformly
bounded above. Since, furthermore, the lengths of ∂0Aj and ∂1Aj are uni-
formly bounded above, it follows that Aj has uniformly bounded diameter,
as claimed. Setting

D = max{diamDi,diamAj}
gives the upper bound

lσ(γQ ∩QT ) ≤ i(γ,Mσ |Q) ·D .

Since the lengths of all the curves in Mσ|Q are bounded above, by the
collar lemma, there is an embedded collar of definite radius d around every
curve in Mσ|Q. Therefore, if γ crosses β ∈ Mσ|Q, then lσ(γ) > d · i(γ, β).
Let k be the number of pants curves in Q. Since there must be some
β ∈Mσ|Q such that i(γ, β) ≥ i(γ,Mσ |Q)/(2k), we have

lσ(γQ ∩QT ) > d
2k · i(γ,Mσ |Q) ,

giving the desired lower bound. �
Applying Proposition 7.7, we can now deduce from Proposition 7.4 that

a non-peripheral curve in Q cannot be too short in Lt:
Proposition 7.8. Let Q be a component of S\Sε(Gt) where ε is chosen as
in equation (24). Then for any non-peripheral simple closed curve ζ in Q,

we have lLt(ζ)
∗� 1.

Proof. First, we claim that
lGt(ν

+
t ∩QT ) + lGt(ν

−
t ∩QT ) ∗� λQ . (27)

To see this, let MGt be a short marking for Gt and let MGt |Q denote its
restriction to Q. By Proposition 7.7, we have
lGt(ν

+
t ∩QT ) + lGt(ν

−
t ∩QT ) ∗� i(MGt |Q, ν+

t ) + i(MGt |Q, ν−t ) ∗� lqt(MGt |Q) .
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On the other hand, lGt(MGt |Q) ∗� 1. Hence by Theorem 5.5

lqt(MGt |Q) ∗� λQ ,

and the claim is proved.
Now if ζ is a non-peripheral simple closed curve in Q with lLt(ζ) < ε0,

then consideration of the collar about ζ gives the estimate

lLt(ν ∩QT )
∗� i(ν, ζ) log

1
lLt(ζ)

,

for any ν ∈ ML(S), so in particular,

lLt(ν
+
t ∩QT ) + lLt(ν

−
t ∩QT )

∗� lqt(ζ) log
1

lLt(ζ)
.

Proposition 7.4 and equation (27) give

λQ
∗� lq(ζ) log

1
lLt(ζ)

.

From the definition of λQ we have λQ/lq(ζ) ≤ 1, so that lLt(ζ)
∗� 1. �

Proposition 7.8 and Proposition 7.1 together prove Theorem A of the
Introduction, that the sets of extremely short curves on Lt and Gt coincide.
More precisely, we can reformulate Proposition 7.8 as

Corollary 7.9. Let ε be as in equation (24). Then there exists ε′ > 0
such that Sε′(Lt) ⊂ Sε(Gt).

It is also now easy to complete the proof of our main comparison between
the thick parts of Lt and Gt:

Theorem 7.10. Let Q be a component of S \ Sε(Gt) which is not a pair
of pants, and let MLt be a short marking for Lt. Then

lGt(MLt |Q) ∗� 1 .

Proof. By Theorem 5.5, we have

lGt(MLt |Q) ∗� 1
λQ
lqt(MLt |Q)

∗� 1
λQ

[
i(MLt |Q, ν+) + i(MLt |Q, ν−)

]
.

By Proposition 7.8, there is a constant ρ = ρ(ε0) depending only on ε0 such
that lLt(ζ) > ρ(ε0) for every non-peripheral curve ζ in Q. Therefore, we
can apply Proposition 7.7 to get

i(MLt |Q, ν+
t ) + i(MLt |Q, ν−t ) ∗� lLt(ν

+
t ∩QT ) + lLt(ν

−
t ∩QT ) .

Since the lower bound lGt(MLt |Q)
∗� 1 is trivial, the result now follows from

Proposition 7.4 and equation (27). �
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Equivalently, we can formulate Theorem 7.10 in terms of the surface Q0

obtained from Q by replacing every boundary component with a puncture.
Let Lt|Q0 and Gt|Q0 be respectively, the surface Q0 equipped with the met-
rics obtained from Lt and Gt by pinching the curves in ∂Q but otherwise
leaving the metric unchanged. In other words, in the notation of the prod-
uct region theorem in section 4.4, the collection of curves in ∂Q is A and
the metrics on Q0 are defined by Π0(Lt) and Π0(Gt), respectively, restricted
to the component Q0 of SA. Then we have
Corollary 7.11. Let Q be a component of S \ Sε(Gt). Then

dT (Q0)(Lt|Q0 ,Gt|Q0) = O(1) .
Proof. The boundary components of both (Q,Lt) and (Q,Gt) are extremely
short. In this case, it was shown in [Mi3] (see the proof of Lemma 7.6) that
(Q,Lt) and (Q,Gt) can be embedded into (Q0,Lt|Q0) and (Q0,Gt|Q0) re-
spectively, by aK-quasi-conformal map, whereK depends only on ε0. Since
simple curves do not penetrate the thin part of Q0, the restriction MLt |Q is
a short marking for (Q0,Lt|Q0). By Theorem 7.10, we have lGt(MLt |Q) ∗� 1.
The result now follows as in the proof of Theorem 3.8. �

7.4 Comparison of lengths of short curves. Theorem 7.10 allows
us to complete the proof of equation (22):
Proposition 7.12. Let α be an extremely short curve on Lt. Then

Ht(α) ≺ Kt(α) .
Proof. With B as in equation (12), let β ∈ B be the curve that has the
largest qt-length, so that

Ht(α) ∗� lqt(β)
lqt(α)

.

Since Sε(Gt) ⊂ Sε0(Lt), it follows that the curves in PLt are disjoint from
Sε(Gt). Thus, α and β are contained in the closure of a common component
Q of S \ Sε(Gt).

Suppose first that β is not peripheral in Q. Then β ∈ MLt|Q, so that
by Theorem 5.5 and 7.10,

lqt(β) ∗� λQlGt(β) ∗� λQ .

If in addition, α is not peripheral, then lqt(α) ∗� λQ so that Ht(α) ∗� 1 and
the desired inequality holds trivially. If α is peripheral, then

Ht(α) ∗� lqt(β)
lqt(α)

∗� λQ

lqt(α)
≤ Kt(α) .

Now suppose that β is peripheral in Q. If Q is a pair of pants, then
the desired inequality follows from the definition of Ht(α) and Kt(α). If
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Q is not a pair of pants, then since the component of Q \MGt |Q contain-
ing β is an annulus whose one boundary component is β and the other a
finite (at most 4) union of arcs coming from curves ∪γi in MGt |Q, again by
Theorem 5.5 we obtain

lqt(β) ≤
∑

lqt(γi)
∗�

∑
λQlGt(γi)

∗� λQ ,

from which the result follows as before. �
Theorem C now follows immediately from Theorem 6.1, Proposition 7.1,

and Proposition 7.12, completing our comparison between short curves on
Gt and Lt.
Theorem 7.13. Let α be any curve on S which is neither vertical nor
horizontal. If α is extremely short in Lt, then

1
lLt(α)

� max
{
Dt(α),

√
Kt(α)

}
.

In case α is vertical or horizontal, we have
Theorem 7.14. If α is vertical, then

1
lLt(α)

� max
{
e−2t ModF0(α),

√
Kt(α)

}
.

If α is horizontal, then the estimate is the same except that the first term
is replaced by e2t ModF0(α).

Proof. There are multiplicative constants depending only on the fixed lam-
inations ν± such that

m∓(α)
i(ν±, α)

∗� ModF0(α)

(see Theorems 6.8 and 5.12) holds independently of α in a tautological way,
due to the fact that the total number of vertical (or horizontal) curves is
finite; it is bounded above by −χ(S). The proofs of Proposition 7.1 and 7.12
go through in this case, so that Ht(α) � Kt(α). Hence the estimate follows
from Theorem 6.8. �

7.5 Teichmüller distance. With the preceding collection of results at
our disposal, Theorem D of the Introduction becomes an easy application
of Minsky’s product region theorem 4.5.
Theorem 7.15. The Teichmüller distance between Gt and Lt is given by

dT (S)(Gt,Lt) = max
α∈Sε(Gt)

1
2

∣
∣∣
∣log

lGt(α)
lLt(α)

∣
∣∣
∣ ±O(1) .

Proof. As noted before, lLt(α) ≤ ε0 for every α ∈ Sε(Gt). To simplify
notation, let Et = Sε(Gt). By Theorem 4.5, we have
dT (S)(Gt,Lt) = max

α∈Et

{
dT (SEt )

(Π0(Gt),Π0(Lt)), dHα(Πα(Gt),Πα(Lt))
}
±O(1) ,
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where SEt is the surface obtained from S by removing Et and replacing the
resulting boundary components by punctures and Π0,Πα are defined as in
section 4.4. From Corollary 7.11 we deduce that

dT (SE )

(
Π0(Gt),Π0(Lt)

)
= O(1) .

If t− tα > 0, then by Theorem 5.11 or 5.13 we have

TwGt(ν
+, α)lGt(α) = O(1) ,

and by Theorem 6.2 or 6.9 we have

TwLt(ν
+, α)lLt(α) = O(1) .

Applying Corollary 4.7 to Gt and Lt and the lamination ν+, we find

exp 2dHα

(
Πα(Gt),Πα(Lt)

) ∗� lGt(α)/lLt(α) .

If t − tα < 0, the same result holds by applying a similar argument
with ν−. �

7.6 Examples. The combinatorial nature of our length estimates al-
lows us to use Theorem 7.15 to construct examples in which L and G have
a variety of different relative behaviors. As a special case, if S is a once-
punctured torus or four-times-punctured sphere, every thick component
must be a pair of pants. In this case, Kt(α) is bounded and therefore, a
curve gets short only if dα(ν+, ν−) is large:

Corollary 7.16. If S is a once-punctured torus or a four-times punc-
tured sphere, then for any measured laminations ν+, ν−, the associated
Teichmüller geodesic and line of minima satisfies

dT (S)(Gt,Lt) = O(1) .

On surfaces of higher genus, it is possible to have ν+, ν− and α such that
dα(ν+, ν−) is bounded while Kt(α) is arbitrarily large. We can construct
a simple example as follows. Take two Euclidean squares each of area 1/2
and cut open a slit of length ε at each of their centers. Although it is
not necessary, for concreteness we can assume that in both squares, the
slit is parallel to a pair of sides. Foliate each square by the two mutually

����

Figure 4: Glue two slit tori along slit.
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orthogonal foliations that both make angle π/4 with the slit and, for each,
take the transverse measure induced by the Euclidean metric. Identify pairs
of sides in each square to obtain two one-holed tori T1, T2 and glue T1, T2

along their boundaries, as shown in the figure, to obtain a genus two surface
S with waist curve α. The two foliations match along α and specifying one
to be the vertical foliation defines a quadratic differential q = q0 on S. Let
G and L be respectively, the Teichmüller geodesic and the line of minima
defined by the vertical and horizontal foliations ν− and ν+ of q0. In this
example, the foliations are rational, but it is easy to see that varying the
initial angle of the slit gives more general foliations.

Let qt be the associated family of quadratic differentials. Note that at
time t = 0 the curve α is balanced. The qt–geodesic representative of α
is unique and the flat annulus corresponding to α is degenerate. Thus, by
Proposition 5.8, we have dα(ν+, ν−) = O(1). But since λT1 = λT2 = 1/

√
2

at t = 0, we have K0(α) � 1/ε (the shaded region indicates a maximal
expanding annulus). Assuming ε is very small, Theorems 5.10 and 6.1 give

1
lG0(α)

� log
1
ε

and
1

lL0(α)
� 1√

ε
.

Thus, by Theorem 7.15,

dT (S)(G0,L0) �
1
2

log
lG0(α)
lL0(α)

� log
1√

ε log[1/ε]
.

In fact, because for any two hyperbolic metrics σ, τ we have [W2]

dT (S)(σ, τ) ≥
1
2

log sup
ζ∈S

lσ(ζ)
lτ (ζ)

,

and because the length of α along G is (coarsely) shortest at the balance
time tα = 0 [R1], the following stronger inequality holds:

inf
t∈R

dT (S)(Gt,L0) ≥ inf
t∈R

1
2

log
lGt(α)
lL0(α)

� 1
2

log
lG0(α)
lL0(α)

.

Taking ε small enough we can ensure that L0 is as far as we like from
any point on G. This example can be easily extended to any surface of
large complexity, by which we mean a surface whose genus g and number
of punctures p satisfies 3g − 4 + p ≥ 1. In summary,

Corollary 7.17. If S is a surface of large complexity, then given any
n > 0, there are measured laminations ν+(n), ν−(n) on S which depend
on n, such that for the associated Teichmüller geodesic G(n) and line of
minima L(n),

inf
t∈R

dT (S)

(
Gt(n),L0(n)

)
> n .
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It is also possible to construct examples for any such surface where
the two measured laminations are fixed and the associated Teichmüller
geodesic and line of minima satisfy dT (S)(Gtn ,Ltn) > n for a sequence of
times tn → ∞ as n→ ∞. This however, is beyond the scope of this paper.

8 Appendix

We give proofs of the length estimates that were deferred in previous sec-
tions.

Proof of Lemma 3.3. Let H be one of the two right-angled hexagons
obtained by cutting P along its three seams. Let li = l(αi)/2 and di be the
length of the seams, labeled as shown in Figure 5. By the cosine formula

��

��

��

��

��

��

�

Figure 5: Half a pair of pants.

for right-angled hexagons, we have

cosh d3 =
cosh l3 + cosh l1 cosh l2

sinh l1 sinh l2
.

By hypothesis, li < L/2, so sinh li
∗� li and cosh li

∗� 1, where the multi-
plicative constants involved depend only on L. Therefore,

cosh d3
∗� 1
l1l2

.

It follows that d3 = log[1/l1] + log[1/l2] ± O(1), where the bound on the
additive error depends only on L.

Now we estimate the length of the perpendicular from αi to itself. Let
x be the length of the perpendicular as in Figure 5. By the formula for
right-angled pentagons, we have

cosh x = sinh l2 sinhd3 .

Since sinh l2
∗� l2 and by the above, sinh d3

∗� 1/[l1l2], it follows that
coshx ∗� 1/l1. Hence, x = log[1/l1]±O(1). Since P is made of two isometric
copies of H, we obtain the desired estimate. �
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To prove Lemma 6.3, in addition to the standard hexagon and pentagon
formulae (see for example [B] or [S1]), we need the following expression for
derivatives of side-lengths derived in [S1, Prop. 2.3]:

Lemma 8.1. Let H be a planar right-angled hexagon with sides labeled
i = 1, . . . , 6 in cyclic order about ∂H. Let li denote the length of side i and
for n mod 6, let pn,n+3 be the perpendicular distance from side n to side
n+ 3. Letting ′ denote derivative with respect to some variable x, we have

(cosh pn,n+3)l
′
n = l

′
n+3 − (cosh ln−2)l

′
n−1 − (cosh ln+2)l

′
n+1 . (28)

It is convenient to subdivide Lemma 6.3 into two parts, Lemma 8.2
and Lemma 8.3, depending on whether or not the common perpendicular
in question is adjacent to α. We begin with a somewhat more detailed
discussion of the possible configurations.

Let P be a pair of pants in S\PLt that has α as a boundary component.
For clarity, we distinguish between the three boundary curves α, β, γ of P
and their projections π(α), π(β), π(γ) to S. We may always assume that
π(γ) �= π(α). There are then two possible configurations depending on
whether or not π(β) = π(α). Figure 6(a) represents the case in which
π(β) = π(α) and Figure 6(b), the case in which π(β) �= π(α). In (b), we do
not rule out the possibility that π(β) = π(γ). This leads to a dichotomy
in the formulae used in the proofs, but not in the final estimates. Let d be
the length of the perpendicular between α and γ and let hα be the length
of the shortest perpendicular from α to itself.

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�
�

��� ���

Figure 6: (a) π(α) = π(β); (b) π(α) �= π(β).

Lemma 8.2. Suppose that α is extremely short in Lt. Then the derivatives
of the perpendiculars adjacent to α are as follows:

(i) d′ =
∂d

∂l(α)
∗� − 1

l(α)
, (ii) h′α =

∂hα

∂l(α)
∗� − 1

l(α)
.
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Proof. Let x, y, z be the lengths of the perpendiculars as shown in Figure 6.
(i) In case (a), the formula (28) and the pentagon formula ([S1] lemma

2.1) give, respectively,

d′ coshx = −cosh d̂
2

, coshx = sinh d̂ sinh
l(α)
2

.

If l(α) is small, then sinh l(α) ∗� l(α) and by Lemma 3.3, d̂ � 1/ log l(α) so
that coth d̂ = O(1). Hence

d′ = − coth d̂
sinh[l(α)/2]

∗� − 1
l(α)

.

In case (b), using the same formulae as above, we get

d′ coshx =
1 − cosh d̂

2
, coshx = sinh d̂ sinh

l(α)
2

.

Now by Lemma 3.3, d̂ = 2 log[1/l(α)]±O(1) and therefore sinh d̂ ∗� 1/l(α)2 ∗�
cosh d̂. Hence,

d′ =
1 − cosh d̂

2 sinh d̂ sinh[l(α)/2]
∗� l(α)[1 − cosh d̂] ∗� − 1

l(α)
.

(ii) In case (a), hα = 2y and cosh y = sinh d sinh[l(γ)/2]. Differentiating
both sides, we get

y′ =
sinh[l(γ)/2] cosh d

sinh y
d′.

By Lemma 3.3, cosh d ∗� 1/[l(α)l(γ)] and sinh y ∗� 1/l(α), so we obtain
y′

∗� −1/l(α), as desired.
In case (b), hα = d̂ and by [S1] equation(6),

d̂′ cosh z = − cosh d .
Substituting cosh z ∗� 1/l(γ) and cosh d ∗� 1/[l(α)l(γ)] gives the desired
estimate. �

Now consider perpendiculars in P that are disjoint from α. Let hγ

be the length of the perpendicular from γ to itself, as shown in Figure 7.
Further, if π(β) �= π(α), let D be the length of the perpendicular between
β, γ. We have hγ = D when π(β) = π(γ) (see Figure 7(b)).
Lemma 8.3. Suppose that α is extremely short in Lt. Then the derivatives
of the perpendiculars not adjacent to α are as follows:

(i) h′γ =
∂hγ

∂l(α)
∗� l(α) , (ii) D′ =

∂D

∂l(α)
∗� l(α) .

Proof. (i) Assume that π(β) �= π(γ) so that we are in the configuration
of Figure 7 (a) or (c). Consider the ‘front’ hexagon in P and denote the
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Figure 7: (a) π(α), π(β), π(γ) all distinct; (b) π(β) = π(γ); (c) π(α) = π(β)

lengths of the sides as shown in Figure 8, so that l1 = l(α)/2, l2 = l(γ)/2,
and z = hγ/2. By the pentagon formula, cosh z = sinh d3 sinh l1. Taking
the derivative with respect to l1, we get

z′ sinh z = d′3 cosh d3 sinh l1 + sinh d3 cosh l1 .

In the proof of Lemma 8.2, we had d′3 = − coth d2/ sinh l1, and by the

��

��

��

��
�

��

��

Figure 8: Front right-angled hexagon.

cosine formula for right-angled hexagons, we have

cosh l1 =
cosh d1 + cosh d2 cosh d3

sinhd2 sinh d3
.

Substituting these, we get

z′ =
1

sinh z
· cosh d1

sinhd2
.

Now by the sine formula for right-angled hexagons,
1

sinhd2
=

sinh l1
sinh d1 sinh l2

.

With this, we have

z′ = sinh l1 ·
cosh d1

sinhd1
· 1
sinh l2 sinh z

∗� sinh l1
∗� l1 ,

since coth d1
∗� 1 and sinh z ∗� 1/l2 when l1, l2 are respectively, bounded.
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In the case π(β) = π(γ), we have h′γ = D′, which is computed below.
(ii) Let y be the length of the perpendicular between α and the com-

mon perpendicular of β, γ, as in Figure 6. Then by equation (28) and the
pentagon formula, we have

D′ cosh y = 1 , cosh y = sinh d sinh
l(γ)
2

.

By Lemma 3.3,
d = log

[
1/l(α)

]
+ log

[
1/l(γ)

]
±O(1) ,

and therefore sinh d ∗� 1/[l(α)l(γ)]. Since the pants system is short,
sinh[l(γ)/2] ∗� l(γ). Thus D′ ∗� l(α), as claimed. �

Lemmas 8.2 and 8.3 together prove Lemma 6.3.
Proof of Lemma 7.2. If ξ has a component ϕ whose support is contained
in Q, then ϕ∩Q = ϕ = ϕQ, which has no effect on the inequality. Thus, we
assume that no component of ξ has support entirely contained in Q. Then,
for simplicity, let us further assume that ξ is a simple closed curve. Since
both sides of the inequality scale linearly with weights, it is sufficient to
prove the lemma under this assumption. The basic idea is to approximate
an arc η of ξ∩Q with the union of ηQ and segments pp̂, qq̂ which run along
∂P between the endpoints p̂, q̂ of ηQ and the corresponding endpoints p, q
of η. Let αp, αq denote the components of ∂P that contain p, q, respectively.
It is possible that αp = αq.

We will show that there are uniform constants C,C ′ such that∣
∣lσ(pp̂) − lσ(αp) · Twσ(ξ, αp)/2

∣
∣ < C (29)

∣
∣lσ(qq̂) − lσ(αq) · Twσ(ξ, αq)/2

∣
∣ < C

∣∣lσ(η) − [lσ(pp̂) + lσ(ηQ) + lσ(qq̂)]
∣∣ < C ′. (30)

It is convenient to consider the picture in the universal cover H
2, as shown

in Figure 9. Let η̃ be a lift of η and let α̃p, α̃q be the lifts of αp, αq that
contain the endpoints of η̃. Since ηQ is homotopic to η relative to ∂Q
and is perpendicular to ∂Q, its lift η̃Q is the unique perpendicular between
α̃p, α̃q, drawn as the segment p̂q̂ in the figure. There are two possible cases,
depending on whether or not η̃ intersects η̃Q.

Let p′, p′′ be the feet of the perpendiculars as shown. That is, p′ is the
foot of the projection from the geodesic ray extending η̃ to α̃p and p′′ is the
foot of the projection from α̃q to α̃p. In either case, by definition of twist,

Twσ(ξ, αp, p) = 2lσ(pp′)/lσ(αp) ,
and furthermore, ∣

∣lσ(pp̂) − lσ(pp′)
∣
∣ < lσ(p̂p′′) . (31)
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Figure 9: Approximating the length of η̃.

On the other hand, by trigonometry in H
2, we have

cosh lσ(p̂p′′) = 1/ tanh lσ(p̂q̂) = 1/ tanh lσ(ηQ) .
Since ηQ goes from αp to αq and since by hypothesis lσ(αp), lσ(αq) < �,
it follows from the collar lemma that lσ(ηQ) > c(�) for some constant c(�)
depending only on �. This implies that there is a constant C = C(�)
depending only on � such that lσ(p̂p′′) < C(�). Therefore, equation (31)
gives equation (29), as desired. Of course, the same argument applies
to αq, so ∣

∣lσ(qq̂) − lσ(αq) · Twσ(ξ, αq, q)/2
∣
∣ < C . (32)

To show equation (30), we use the well-known fact that, for any θ0 > 0,
there exists a constant k(θ0) such that, for any hyperbolic triangle with
sidelengths a, b, c and angle θ opposite to c with θ ≥ θ0, we have a+ b− c <
k(θ0). In the case where η̃ intersects η̃Q, as in the figure on the left, we
apply this to the triangles �opp̂ and �oqq̂ and get

lσ(pp̂) + lσ(p̂q̂) + lσ(qq̂) − lσ(pq) < k(π/2) .
In the case on the right, we apply this to triangles �pq̂p̂ and �pqq̂. To

see that ∠qq̂p is bounded below by some θ0, observe that
∠qq̂p = π/2 − ∠pq̂p̂ ,

and that
sin(∠pq̂p̂) < 1

cosh lσ(p̂q̂)
.

Since lσ(p̂q̂) = lσ(η̃Q) > c(�), it follows that ∠pq̂p̂ is bounded away from
π/2 and so ∠qq̂p is bounded below by some constant θ0 = θ0(�), as desired.
Thus in this case,

lσ(pp̂) + lσ(p̂q̂) + lσ(qq̂) − lσ(pq) < k(π/2) + k
(
θ0(�)

)
,

completing the proof of equation (30).
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Combining equations (29),(30), and (32) we obtain
∣
∣∣
∣lσ(η) −

[
lσ(ηQ) + lσ(αq)

Twσ(ξ, αq)
2

+ lσ(αp)
Twσ(ξ, αp)

2

]∣
∣∣
∣ < K(�) .

Summing over all arcs η in ξ ∩Q, we obtain
∣
∣∣
∣lσ(ξ ∩Q) −

[
lσ(ξQ) +

∑

j

lσ(αj)
Twσ(ξ, αj)

2
i(ξ, αj)

]∣
∣∣
∣ < K(�)i(ξ, ∂Q) . �
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