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Abstract. We study recurrent geodesic rays in a CAT(0) space. Let thickτ (T ) be the
amount of time τ [0, T ] spends in the thick part. A parametrized unit speed geodesic τ in
X will be called (γ0, L0,M0, θ) recurrent if

E(τ) = lim
T→∞

|t ∈ [0, T ] : τ(t) ∈ Thick(γ0, L0,M0)|
T

= θ.

The geodesic τ will be called recurrent if for every γ0, L0,M0 there is a θ > 0 such that τ
is (γ0, L0,M0, θ) recurrent. We show that every recurrent geodesic ray is κ–Morse. Two
applications are also described. The first one concerns the Poisson boundaries of CAT(0)
groups and the second concerns the Patterson Sullivan measure on ∂κX. need a new one

1. Introduction

A major theme in recent research in metric geometry has been to find evidence of
abundance of hyperbolic behavior in non-hyperbolic spaces. Well studied examples of
such spaces include CAT(0) spaces with rank-1 geodesics: geodesics which do not bound
a flat of infinite diameter. In a sense, these can be considered as geodesics in CAT(0)
spaces exhibiting hyperbolic behavior. To any CAT(0) space can be associated the visual
boundary consisting of asymptotic equivalence classes of geodesic rays. The limits of rank-1
geodesics in the visual boundary have been well studied, and shown to be generic in various
senses of the word. However, neither the visual boundary nor its subset consisting of rank-1
directions is quasi-isometry invariant, which precludes it from being a topological invariant
for groups acting properly and cocompactly on CAT(0) spaces. Thus, while genericity of
rank-1 directions encapsulates abundance of hyperbolic behavior in rank-1 CAT(0) spaces
it is difficult to translate in terms of properties of groups acting on such spaces. Qing and
Rafi [QRT19], showed that a certain subset of the visual boundary consisting of limits of
sublinearly Morse geodesics, when given a topology slightly different from the one induced
from the visual boundary, called the sublinearly Morse boundary is in fact a quasi-isometry
invariant.

In this paper, we show that this subset of the visual boundary is ”generic” in several
reasonable senses of the word. The visual boundary of a CAT(0) space X carries several
natural families of measures corresponding to limits of different averaging procedures over
orbits of a group acting on X properly and cocompactly. One are the so-called Patterson-
Sullivan measures, studied in this context by Ricks [Ric17]. These are the weak limits of
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ball averages in the metric on X and are intimately related to the measure of maximal
entropy on the unit tangent bundle of the geodesic flow on X. The other family consists of
stationary measures associated to random walks coming from finitely supported measures
µ on G: these are weak limit of measures on the orbit obtained by taking a large number
of independent µ-distributed steps. We show that for either family of measures, almost
every direction of the visual boundary is sublinearly Morse.

Theorem 1.1. Let Gy X be a countable group of properly discontinuous, cocompact and
isometric actions on a rank-1 CAT(0) space X. Let ν be a measure on the visual boundary
of X which is either the Patterson-Sullivan measure or the stationary measure for a finitely
supported generating random walk on G. Then ν gives measure zero to the complement of
sublinearly Morse directions.

use intro-theorem notation?
As a corollary to the above statement about stationary measures we obtain:

Corollary 1.2. Let µ be any measure on G whose finite support generates G as a semi-
group. The sublinearly Morse boundary with either the subspace topology induced from the
visual boundary or the Qing-Rafi topology is a topological model for the Poisson boundary
of (G,µ).

In order to prove Theorem 1.1, we prove that

Theorem A. For any group G acting properly and cocompactly on a rank-1 CAT(0) space
X, and any finitely supported measure on G, the subliearly Morse boundary of G is a model
for its Poisson boundary (G,µ) where µ is a finitely supported generating measure on G.

We prove genericity of sublinearly Morse directions of the visual boundary by first prov-
ing that certain geodesics satisfying recurrent properties are sublinearly Morse. Namely,
an infinite geodesic will be called strongly recurrent if it which spend a uniformly positive
proportion of the time fellow travelling uniformly long contracting segments. We prove

Theorem 1.3. A strongly recurrent infinite geodesic in any proper geodesic metric space
is sublinearly Morse.

We then use ergodic theoretic methods to prove

Theorem 1.4. Let G y X be a properly discontinuous and cocompact isometric action
of a countable group on a rank-1 CAT(0) space X. Let ν be a measure on the visual
boundary of X which is either the Patterson-Sullivan measure or the stationary measure
for a finitely supported symmetric generating random walk on G. Then ν gives measure
zero to the complement of limit points of strongly reccurent geodesics.

For the Patterson-Sullivan measure, Theorem 1.4 is a simple consequence of Birkhoff’s
ergodic theorem and the ergodicity of the geodesic flow in rank-1 CAT(0) spaces. For sta-
tionary measures coming from random walks, the genericity of strongly recurrent geodesics
is derived from the double ergodicity of the Poisson boundary and follows the proof of a
similar result for the Teichmüller geodesic flow proved by Baik-Gekhtman-Hamenstaedt
[?].
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Our arguments in proving do not use the CAT(0) property in an essential way and in
fact are valid in any space with a reasonable geodesic flow. Indeed the results of [?] on
genericity of strongly recurrent Teichmüller geodesics allow us to conclude:

Theorem 1.5. Let S be a closed surface of genus at least 2 and Mod(S) the associated
mapping class group and Teich(S) the associated Teichmüller space endowed. Let µ a
probability measure on Mod(S) whose finite support Mod(S) generates Mod(S). Then the
sublinearly Morse boundary of Teich(S) endowed with the Qing-Rafi cone topology is a
topological model for the Poisson boundary of (Mod(S), µ).

History. Kaimanovich [Kai00] proved that the Poisson boundary of hyperbolic groups
are realized on their Gromov boundary. For CAT(0) groups, Karlson-Margulis [KM99]
showed that random walk tracks geodesic rays sublinearly and thus the visual boundary
realizes the Poisson boundary of CAT(0) spaces on which a CAT(0) group acts geometri-
cally. However, visual boundaries are in general not QI-invariant and therefore not group-
invariant, as shown by Croke-Kleiner [CK00]. Qing-Rafi-Tiozzo [QRT19] constructed κ–
Morse boundaries for CAT(0) spaces that are QI-invariant and in the case of right-angled
Artin groups, do realizes their Poisson boundaries. For mapping class groups, Kaimanovich-
Masur showed that uniquely ergodic projective measured foliations with the corresponding
harmonic measure can be identified with the Poisson boundary of random walks. Our
proof of Theorem 1.4 follows a quantitative version of the Kaimanovich-Masur[KM96] re-
sult considered in the Teichmüller space setting by Baik-Gekhtman-Hamenstädt . need a
citation. Also, discuss Choi

Organization of the paper. Section 2 recalls all necessary background for κ-Morse
boundaries and establishes the geometric properties needed, i.e. a geodesic ray cannot fel-
low travel a contracting geodesic for a long time while keeping far away from it. Section 4.3
introduces the concept of recurrent geodesics and proves the main technical theorem that
a a generic geodesic ray in a CAT(0) is strongly recurrent, where genericity can be defined
with respect to a variety of natural measures on ∂X. Section 3 proves that strongly re-
currency of a geodesic with respect to a contracting geodesic implies κ–Morse-ness, which
leads to Theorem ??. Section ??

2. Sublinearly Morse quasi-geodesic rays in proper metric space

In geometric group theory, we are mainly interested in geometric properties of the asso-
ciated spaces that are group-invariant. In the setting of finitely generated groups, group-
invariance can be interpreted as quasi-isometries between metric spaces and objects, which
we introduce now.

2.1. Quasi-isometries of groups and metric spaces.

Definition 2.1 (Quasi-isometric embedding). Let (X, dX) and (Y, dY ) be metric spaces.
For constants k ≥ 1 and K ≥ 0, we say a map Φ: X → Y is a (k,K)–quasi-isometric
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embedding if, for all x1, x2 ∈ X
1

k
dX(x1, x2)− K ≤ dY

(
Φ(x1),Φ(x2)

)
≤ k dX(x1, x2) + K.

If, in addition, every point in Y lies in the K–neighbourhood of the image of Φ, then
f is called a (k,K)–quasi-isometry. When such a map exists, X and Y are said to be
quasi-isometric.

A quasi-isometric embedding Φ−1 : Y → X is called a quasi-inverse of Φ if for every
x ∈ X, dX(x,Φ−1Φ(x)) is uniformly bounded above. In fact, after replacing k and K with
larger constants, we assume that Φ−1 is also a (k,K)–quasi-isometric embedding,

∀x ∈ X dX
(
x,Φ−1Φ(x)

)
≤ K and ∀y ∈ Y dY

(
y,Φ Φ−1(x)

)
≤ K.

Geodesics and quasi-geodesic rays and segments. Fix a base point o ∈ X. A
geodesic ray in X is an isometric embedding τ : [0,∞) → X such that τ(0) = o. That
is, by convention, a geodesic ray is always assumed to start from this fixed base-point.
A quasi-geodesic ray is a continuous quasi-isometric embedding β : [0,∞) → X such that
β(0) = o. That is, there are constants q ≥ 1, Q > 0 such that, for s, t ∈ [0,∞), we have

|s− t|
q
− Q ≤ dX

(
β(s), β(t)

)
≤ q |s− t|+ Q.

The additional assumption that quasi-geodesics are continuous is not necessary, but it
is added for convenience and to make the exposition simpler. One can always adjust a
quasi-isometric embedding slightly to make it continuous (see [BH09, Lemma III.1.11]).

Similar to above, a geodesic segment is an isometric embedding τ : [s, t] → X and a
quasi-geodesic segment is a continuous quasi-isometric embedding β : [s, t]→ X.

We often denote the images of a geodesic τ or a quasi-geodesic β as a subset of X again
by τ and β respectively. That is, a point on β, is a point x ∈ X such that x = β(tx) for
some time tx. We adopt the following notation for sub-segments of geodesics and quasi-
geodesics. Suppose β : [s, t]→ X is quasi-geodesic path and let x, y ∈ X be two points on
β, namely x = β(tx) and y = β(ty) for tx, ty ∈ [s, t]. Then [x, y]β is the subsegment of β
starting from x and ending in y, that is [x, y]β = β|[tx,ty ]. Also for points x, y ∈ X, we let
[x, y] represent a geodesic segment connecting x to y.

For a quasi-geodesic ray β and r > 0, we define β|r to be the quasi geodesic sub-segment
of β that starts at o and ends at the first point on β where the distance to o is r.

Notations. We adopt the following notation for lines and segments in this paper. Suppose
β is a specified path, then

[x, y]β : the segment of β from x ∈ β to y ∈ β.

In the special case where β is a geodesic, we suppress the subscript, i.e. we use [x, y] denote
geodesic segments between the two points. If β emanates from the base-point, then

β|r : the point on β that is distance r from o.
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Contracting geodesics. Let Z be a closed subset of X and x be a point in X. By d(x, Z)
we mean the set-distance between x and Z, i.e.

d(x, Z) := inf{d(x, y) | y ∈ Z}.

Let

πZ(x) := {y | d(x, y) = d(x, Z)}
be the set of nearest-point projections from x to Z. Since X is a proper metric space,
πZ(x) is non empty. We refer to πZ(x) as the projection set of x to Z. For a quasi-geodesic
β and x ∈ X, we write xβ to denote any point in the projection set of x to β.

Definition 2.2. We say a closed subset Z ⊂ X is N–contracting for a constant N > 0 if,
for all pairs of points x, y ∈ X, we have

d(x, y) < d(x, Z) =⇒ d(xZ , yZ) ≤ N.

Any such N is called a contracting constant for Z.

2.1.1. Nearest-point projections in proper metric spaces. Let Z be a closed subset of X and
x be a point. By d(x, Z) we mean the set-distance between x and Z, i.e.

d(x, Z) := min{d(x, y)|y ∈ Z}.

Let

πZ(x) := {y|d(x, y) = d(x, Z)}
be the set of nearest-point projections from x to Z. Since X is a proper metric space,
projections of a point to a closed set always exist. We refer to the convex hull of πZ(x) as
a projection set. We write xβ to denote any point in the projection set of x to β.

Lemma 2.3. [QRT22] Consider a point x ∈ X and a (q,Q)–quasi-geodesic segment β
connecting a point z ∈ X to a point w ∈ X. Let y be a point in xβ, and let γ be the
concatenation of the geodesic segment [x, y] and the quasi-geodesic segment [y, z]β ⊂ β.
Then γ = [x, y] ∪ [y, z]β is a (3q,Q)–quasi-geodesic.

is this needed?

2.2. κ-Morse and κ-contracting sets. Now we introduce a large class of quasi-geodesic
rays that are quasi-isometry invariant. Intuitively, these quasi-geodesics have a weak Morse
property, i.e. their quasi-geodesics stay close asymptotically. To begin with, we fix a
function that is sublinear in the following sense:

2.2.1. Sublinear functions. We fix a function

κ : [0,∞)→ [1,∞)

that is monotone increasing, concave and sublinear, that is

lim
t→∞

κ(t)

t
= 0.
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Note that using concavity, for any a > 1, we have

(1) κ(at) ≤ a
(

1

a
κ(at) +

(
1− 1

a

)
κ(0)

)
≤ a κ(t).

Remark 2.4. The assumption that κ is increasing and concave makes certain arguments
cleaner, otherwise they are not really needed. One can always replace any sublinear function
κ, with another sublinear function κ so that κ(t) ≤ κ(t) ≤ Cκ(t) for some constant C and
κ is monotone increasing and concave. For example, define

κ(t) = sup
{
λκ(u) + (1− λ)κ(v)

∣∣∣ 0 ≤ λ ≤ 1, u, v > 0, and λu+ (1− λ)v = t
}
.

The requirement κ(t) ≥ 1 is there to remove additive errors in the definition of κ–
contracting geodesics.

Definition 2.5 (κ–neighborhood). For a closed set Z and a constant n define the (κ, n)–
neighbourhood of Z to be

Nκ(Z, n) =
{
x ∈ X

∣∣∣ dX(x, Z) ≤ n · κ(x)
}
.

o τ

x

xb

n · κ(x)

||x||

(κ, n)–neighbourhood of τ

Figure 1. A κ-neighbourhood of a geodesic ray τ with multiplicative con-
stant n.

In this paper, Z is either a geodesic or a quasi-geodesic. That is, we can write Nκ(τ, n)
to mean the (κ, n)–neighborhood of the image of the geodesic ray τ . Or, we can use phrases
like “the quasi-geodesic β is κ–contracting” or “the geodesic τ is in a (κ, n)–neighbourhood
of the geodesic c”.

Definition 2.6. Let β and γ be two quasi-geodesic rays in X. If β is in some κ–
neighbourhood of γ and γ is in some κ–neighbourhood of β, we say that β and γ κ–fellow
travel each other. This defines an equivalence relation on the set of quasi-geodesic rays in
X (to obtain transitivity, one needs to change n of the associated (κ, n)–neighbourhood).
We refer to such an equivalence class as a κ–equivalence class of quasi-geodesics. We de-
note the κ–equivalence class that contains β by [β] or we use the notation b for such an
equivalence class when no quasi-geodesic in the class is given.

A metric space is called a unique geodesic space if any two points can be connected by
a unique geodesic.
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Lemma 2.7. [QRT19] Let b : [0,∞)→ X be a geodesic ray in a unique geodesic space X.
Then b is the unique geodesic ray in any (κ, n)–neighbourhood of b for any n. That is to
say, distinct geodesic rays do not κ–fellow travel each other.

κ–contracting and κ–Morse sets. First we recall the definition of κ–contracting and
κ–Morse sets from [QRT22].

Definition 2.8 (weakly κ–Morse). We say a closed subset Z of X is weakly κ–Morse if
there is a function

mZ : R2
+ → R+

so that if β : [s, t]→ X is a (q,Q)–quasi-geodesic with end points on Z then

β[s, t] ⊂ Nκ
(
Z,mZ(q,Q)

)
.

We refer to mZ as the Morse gauge for Z. We always assume

(2) mZ(q,Q) ≥ max(q,Q).

Definition 2.9 (Strongly κ–Morse). We say a closed subset Z of X is strongly κ–Morse
if there is a function mZ : R2 → R such that, for every constants r > 0, n > 0 and every
sublinear function κ′, there is an R = R(Z, r, n, κ′) > 0 where the following holds: Let
η : [0,∞)→ X be a (q,Q)–quasi-geodesic ray so that mZ(q,Q) is small compared to r, let
tr be the first time ‖η(tr)‖ = r and let tR be the first time ‖η(tR)‖ = R. Then

dX
(
η(tR), Z

)
≤ n · κ′(R) =⇒ η[0, tr] ⊂ Nκ

(
Z,mZ(q,Q)

)
.

Definition 2.10 (κ–contracting). Recall that, for x ∈ X, we have ‖x‖ = dX(o, x). For a
closed subspace Z of X, we say Z is κ–contracting if there is a constant cZ so that, for
every x, y ∈ X

dX(x, y) ≤ dX(x, Z) =⇒ diamX

(
xZ ∪ yZ

)
≤ cZ · κ(‖x‖).

To simplify notation, we often drop ‖�‖. That is, for x ∈ X, we define

κ(x) := κ(‖x‖).

Now we show that one can surger quasi-geodesic segments so they all starts at the
base-point:

Lemma 2.11. Let τ be κ-Morse geodesic ray. Let β : [a, b]→ X be a (q,Q)- quasi-geodesic
segment with endpoints on τ . Them there exists β′ : [0, b′] such β′ is a (9q,Q)–quasi-
geodesic segment that starts at o and ends at β(b).

Proof. Consider the nearest-point projection of o to β and there is at least one point on β
that realizes the distance, call it p ∈ β. Consider the concatenation [o, p] ∩ [p, β(b)]β. By
Lemma 2.3 this is a (3q,Q)–quasi-geodesic that emanates from o and ends on β. �

Thus in this paper we sometimes the use following slightly different but equivalent chara-
terization of κ–Morse, which better suits the context:
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Definition 2.12 (κ–Morse II). We say a closed subset Z of X is κ–Morse II if there is a
function

mZ : R2
+ → R+

so that if β : [0, t]→ X is a (q,Q)–quasi-geodesic starting at o and with β(t) ∈ Z then

β[0, t] ⊂ Nκ
(
Z,mZ(q,Q)

)
.

We refer to mZ as the Morse gauge for Z. We always assume

(3) mZ(q,Q) ≥ max(q,Q).

By the above definitions are equivalent. That is, we can check either condition and the
others are implied.

There are strong relationships between these definitions, which we summarize in the
following theorem. The equivalence between (1) and (3) is proven in Lemma 2.11, the
equivalence between (1) and (2) is [QRT22, Theorem 3.10]. Lastly, the equivalence in
CAT(0) space is established in [QRT19, Theorem A]. For definitions and properties of
CAT(0) spaces, see Section 4.

Theorem 2.13 (Lemma 2.11, [QRT19, QRT22] ). Let X be a proper geodesic space, then
the following conditions are equivalence for a quasi-geodesic ray τ .

(1) τ is κ-Morse.
(2) τ is κ-weakly Morse.
(3) τ is κ-Morse II.

Furthermore, if X is a proper CAT(0) space or the Teichmüller space of a finite type
surface, then τ is κ-Morse if and only if it is κ-contracting.

Lastly, a quasi-geodesic is called sublinearly Morse if it is κ-Morse for some sublinearly
growing function κ. Two parametrized quasi-geodesics γ1, γ2 are said to be equivalent if
their diverge sublinearly, i.e.

d(γ1(t), γ1(t))/t→ 0.

Let ∂κX denote the set of equivalence classes of κ Morse quasi-geodesics and ∂SLX
set of equivalence classes of κ sublinearly Morse quasi-geodesics. Qing, Rafi and Tiozzo
introduced the metrizable coarse cone topology on the setX∪∂κX which can be characterize
as follows.

A sequence xn ∈ X converges to an equivalence class of a quasi-geodesic ζ in ∂κX if
d(xn, ζ)/d(o, xn)→ 0.

It is shown in [QRT22] that X ∪ ∂κX with the coarse cone topology is a QI-invariant
set.

3. Geodesics with enough Morse segments are sublinearly Morse

In this section, we introduce the notion of frequently contracting geodesics which are
geodesics that contain sufficiently many (in a statistical sense) strongly contracting subseg-
ments. We then give a criterion for a geodesic ray to be frequently contracting (Lemma 3.3).
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We then prove that every frequently contracting geodesic is in fact sublinearly Morse
(Corollary 3.7). In the next section, we use ergodic theory to show that in CAT(0) spaces
and Teichmüller space, frequently contracting geodesics are generic in several reasonable
senses of the word.

Definition 3.1. A unit speed parametrized geodesic ray τ : [0,∞) → X is (N,C)–
frequently contracting for constant N,C > 0 if the following holds. For each L > 0 and
θ ∈ (0, 1) there is an R0 > 0 such that for R > R0 and t > 0 there is an interval of time
[s− L, s+ L] ⊂ [t, t+ θR] and an N–contracting geodesic γ such that,

u ∈ [s− L, s+ L] =⇒ d(τ(u), γ) ≤ C.
That is, every subsegment of τ of length θL contains a segment of length R that is C–close
to an N–contracting geodesic γ. A bi-infinite geodesic τ is frequently contracting if the
rays t→ τ(t) and t→ τ(−t) are both frequently contracting.

Definition 3.2. If for some t, τ(t − L, t + L) is C–close to some N–contracting geodesic
γ, we say (in analogy with Teichmüller space) τ(t) is in the thick part of τ . Define

thickτ (T ) =
∣∣∣{t ∈ [0, T ] : τ(t− L, t+ L) is C–close

to some N–contracting geodesic γ
}∣∣∣.

That is, thickτ (T ) is the amount of time τ [0, T ] spends in the thick part. We now give a
sufficient condition for a geodesic ray to be frequently contracting.

Lemma 3.3. Let τ : [0,∞)→ X be a geodesic ray. Suppose there are constants N,C > 0
such that for each L > 0 there is a m > 0 where

lim
T→∞

thickτ (T )

T
= m.

Then τ is frequently contracting.

Proof. Suppose that τ is a geodesic ray satisfying the condition of the Lemma. Then

(4) lim
s,t→∞

thickτ (t)/t

thickτ (s)/s
= 1.

Now assume, by way of contradiction, that τ is not (N,C)–frequently contracting. Then
there are constants 0 < θ < 1 and L > 0 and sequences Rn →∞ and 0 ≤ tn ≤ (1− θ)Rn
such that [tn, tn + εRn]τ contains no segment of length 2L that is C–close to some N–
contracting geodesic γ. That is,

thickτ (tn) = thickτ (tn + θRn).

Therefore,

thickτ (tn)/tn
thickτ (tn + θRn)/(tn + θRn)

=
(tn + θRn)

tn
≥ (tn + θtn)

tn
= (1 + θ) > 1.

This contradicts Equation (4). The contradiction proves the desired result of this lemma.
�
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Our goal is to show that, if τ is frequently contracting, then the diameter of the projection
of disjoint balls to τ is sublinearly small. It is in fact sufficient to show that the diameter
of the projection of a disjoint balls is smaller than every linear function.

Proposition 3.4. Let τ : [0,∞)→ X be an (N,C)–frequently contracting geodesic. Then
for every θ > 0 there is R0 > 0 such that for all R ≥ R0 the following holds. Assume

d(x, y) ≤ d(x, τ) and d(o, x) ≤ R
Then

d(πτ (x), πτ (y)) ≤ θR.

We recall several well known facts regarding the properties of contracting geodesics.

Lemma 3.5. There are constants C1, D1 > 0 depending on N such that if γ is N–
contracting and the geodesic segment [x, y] is outside of the C1–neighborhood of γ then
the projection of [x, y] to γ has diameter at most D1.

Lemma 3.6. There is a constant C2 > 0 depending only on N such that, for a N–
contracting geodesic γ and for x, y ∈ X, if d(πγ(x), πγ(y)) ≥ D2, then the C2–neighborhood
of the geodesic segment [x, y] contains the segment [πγ(x), πγ(y)]γ.

Proof of Proposition 3.4. Assume τ [s, t] is C close to some N–contracting geodesic γ with

d(τ(s), γ(s′)) ≤ C and d(τ(t), γ(t′)) ≤ C
for some times s < t and s′ < t′ where L = (t− s) is large.

Claim. There is a D2 (depending only on N and specified in Lemma 3.6 )such that, for
any x ∈ X, if πτ (x) = τ(u) for u ≤ s then πγ(x) = γ(u′) for u′ ≤ s′ +D2.

τ(u) τ(s) τ(t)
τ

γ(s′)

z

γ(t′)

γ(u′)
x

γ

Figure 2. Claim.

This is because by Lemma 3.5, z = πγ(πτ (x)) is near γ(s′). If πγ(x) = γ(u′) where
(u′ − s′) is larger than D2, then by Lemma 3.6, we have the a C2–neighborhood of the
geodesic [x, πτ (x)] contains the sub-segment γ[s′, u′]. Choose w′ such that w′ − s′ is large
and,

d(γ(w′), γ(w)) ≤ C
for some w where (w − s) is large. Therefore, γ(w′) and hence τ(w) are much closer to x
than πτ (x) which is a contradiction and thus the claim holds.
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Now, if d(πτ (x), πτ (y)) ≥ θR for sufficiently large R, the segment [πτ (x), πτ (y)]τ contains
a subsegment τ [s, t] with (t− s) ≥ L that is C close to some γ. Then the projection of x, y
to γ are L− 2D2 apart. Which means the (D2 +C)–neighborhood of the geodesic segment
[x, y] covers the segment τ [s, t]. Hence d(x, y) > d(x, τ), contradicting the assumption.
This finishes the proof of Proposition 3.4. �

o τ

x

y

πτ (x) πτ (y)

R

θR

γ

Figure 3. proof of Proposition 3.4

Corollary 3.7. If τ is frequently contracting, then it is κ-contracting for some sublinear
function κ. Hence it is also κ-Morse.

Proof. Assume for contradiction that τ is not κ–contracting for any sublinear function κ.
That is, there is a sequence of point xn, yn ∈ X with ‖xn‖ → ∞, such that

dX(xn, yn) ≤ dX(xn, τ).

However, we have

lim sup
n→∞

diamX

(
xnτ ∪ ynτ

)
‖xn‖

≥ 3θ > 0.

Taking a subsequence, we can in fact assume that, for every n,

(5)
diamX

(
xnτ ∪ ynτ

)
‖xn‖

≥ 2θ.

Let R0 be the constant associated to θ given by Proposition 3.4 and let n be such that
‖xn‖ ≥ R0. Then for R = ‖xn‖, Proposition 3.4 implies that

diamX

(
xnτ ∪ ynτ

)
‖xn‖

≤ θ,

which contradicts (5). The contradiction proves the corollary as desired. �
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4. CAT(0) spaces, their boundaries and their isometries

A proper geodesic metric space is CAT(0) if it satisfies a certain metric analogue of
nonpositive curvature. Roughly speaking, a space is CAT(0) if geodesic triangles in X are
at least as thin as triangles in Euclidean space with the same side lengths. To be precise,
for any given geodesic triangle 4pqr, consider the unique triangle 4pqr in the Euclidean
plane with the same side lengths. For any pair of points x, y on edges [p, q] and [p, r] of the
triangle 4pqr, if we choose points x and y on edges [p, q] and [p, r] of the triangle 4pqr so
that dX(p, x) = dE(p, x) and dX(p, y) = dE(p, y) then,

dX(x, y) ≤ dE2(x, y).

For the remainder of the paper, we assume X is a proper CAT(0) space. A metric space
X is proper if closed metric balls are compact. Here, we list some properties of proper
CAT(0) spaces that are needed later (see [BH09]).

Lemma 4.1. A proper CAT(0) space X has the following properties:

i. It is uniquely geodesic, that is, for any two points x, y in X, there exists exactly one
geodesic connecting them. Furthermore, X is contractible via geodesic retraction to a
base point in the space.

ii. The nearest-point projection from a point x to a geodesic line b is a unique point denoted
xb. In fact, the closest-point projection map

πb : X → b

is Lipschitz.
iii. convexity: if β : [0, 1] → X is a quasi-geodesic segment with endpoint on the geodesic

line γ : [0, 1] → X, and β(i) = γ(1), i = 0, 1 then for every 0 ≤ s ≤ 1, there exists t
such that πγ(β(t)) = γ(s).

4.1. The visual boundary of CAT(0) spaces.

Definition 4.2 (visual boundary). Let X be a CAT(0) space. The visual boundary of
X, denoted ∂X, is the collection of equivalence classes of infinite geodesic rays, where τ
and β are in the same equivalence class, if and only if there exists some C ≥ 0 such that
d(τ(t), β(t)) ≤ C for all t ∈ [0,∞). The equivalence class of τ in ∂X we denote τ(∞).

Notice that by Proposition I. 8.2 in [BH09], for each τ representing an element of ∂X,
and for each x′ ∈ X, there is a unique geodesic ray τ ′ starting at x′ with τ(∞) = τ ′(∞).

We describe the topology of the visual boundary by a neighbourhood basis: fix a base
point o and let τ be a geodesic ray starting at o. A neighborhood basis for τ is given by
sets of the form:

Uv
(
τ(∞), r, ε) := {β(∞) ∈ ∂X|β(0) = o and d(τ(t), β(t)) < ε for all t < r}.

In other words, two geodesic rays are close if they have geodesic representatives that start
at the same point and stay close (are at most ε apart) for a long time (at least r). Notice
that the above definition of the topology on ∂X references a base-point o. Nonetheless,
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Proposition I. 8.8 in [BH09] proves that the topology of the visual boundary is base-point
invariant.

For each o ∈ X and ζ in ∂X there is a unique unit speed parametrized geodesic ray τo,ζ
through o converging to ζ.

x0 ξ

r

ε

Figure 4. A basis for open sets

4.2. CAT(0) spaces and their isometries. A flat strip of a space X is a subset F ⊂ X
isometric to R × I for some interval I with the Euclidean metric. It is a flat plane if
I = (−∞,∞) and a flat half plane if I = [0,∞). Call an infinite geodesic line in X rank
one if its image does not bound a flat half-plane in X and zero width if it does not bound
any flat strip. For any element g ∈ Isom(X), the translation length of g is defined as

l(g) = min{d(x, gx)|x ∈ X}.
Any geodesic contained in {p ∈ X : d(p, gp) = l(p)} is called an axis of g. If a rank one
geodesic γ is an axis of an isometry g ∈ Isom(X), we call γ a rank one axis and g a rank
one periodic isometry. A CAT(0) space is said to be rank one if it has a rank-1 geodesic.
The space X is said to be geodesically complete if any geodesic segment can be extended
to a bi-infinite geodesic. Any bi-infinite geodesic τ converges forwards and backwards to
τ+, τ− ∈ ∂X respectively then τ is the unique geodesic with these limit points in ∂X.
Unless X is Gromov hyperbolic, not any two points of ∂X can be joined by a bi-infinite
geodesic but the set of pairs that can be joined by a rank-1 geodesic form an open and
dense of of ∂X × ∂X.

The limit set L(G) ⊂ ∂X of G is the unique minimal closed G-invariant subset of ∂X.
An action by isometries G y X is said to be rank-1 (and G is said to be a rank-1 group)
if it contains two rank-1 isometries whose pairs of fixed points in ∂X are disjoint. A
geodesically complete CAT(0) space admitting a rank-1 action G y X always has a zero
width geodesic with endpoints in L(G)([Ric17], Proposition 8.14). A cococompact action
by isometries on a rank-1 CAT(0) space is always rank-1.

Let SX denote the unit tangent bundle of X, defined as the set of parametrized unit
speed bi-infinite geodesics in X endowed with the compact-open topology.

Let πfp(v) = v(0) be the footpoint projection πfp : SX → X. Let

gt : SX → SX, τ(s)→ τ(s+ t)
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be the geodesic flow. Let SGX ⊂ SX denote the set of v ∈ SX with v± ∈ L(G) For
x, y ∈ X and ζ, α ∈ ∂X define the Busemann function βζ(x, y) = limz→ζ d(x, z) − d(y, z)
and the Gromov product ρx(ζ, α) = limz→α,w→ζ(d(z, x) + d(w, x)− d(z, w))/2.

Given a basepoint o ∈ X there is a map Ho : SX → ∂X × ∂X × R given by

Ho(v) = (v+, v−, βγ(o, v(0)).

The restriction of Ho to the set Z of zero width geodesics is one-to-one. Let [SX] be the set
of equivalence classes of SX under the equivalence relation given by v w if Ho(v) Ho(w).
This equivalence relation does not depend on the basepoint o.

4.3. Genericity of frequently contracting geodesics in CAT(0) spaces. The visual
boundary ∂X of a rank-1 CAT(0) space X carries several natural classes of measures,
corresponding to different averaging constructions over orbits of a properly discontinuous
group action G y X One is the Patterson-Sullivan measure, studied in this context by
Ricks [Ric17]. For geometric group actions, it can be described as the weak limit of distri-
butions of G orbits for large spheres in the metric on X. The other family are stationary
measure associated to random walks on G with finite increments: these are weak limits of
pushforwards in X of convolution powers of finitely supported probability measures µ on
G. In the next two sections we prove the following:

Theorem 4.3. Let X be a CAT(0) space and let G act on X geometrically. Let ν be either
of the following

• The Patterson-Sullivan measure on ∂X, if X is geodesically complete.
• The stationary measure coming from a finitely supported random walk on G.

Then ν almost every point of ∂X is frequently contracting.

In fact, we will prove Theorem 4.3 for measures coming from a more general class of
actions, which are not necessarily cocompact.

4.4. Choosing a fixed sublinear function. Fix this Theorem 4.3 implies that, with
respect to either the Patterson-Sullivan or the stationary measure ν, ν a.e. ζ ∈ ∂X is
sublinearly contracting. In this subsection, we show that there is a single sublinear function
κ such that ν a.e. ζ for any x ∈ X the geodesic ray [x, ζ) is cx(ζ)κ contracting for some
cx(ζ) > 0. Indeed, let Ω = {κi} be a countable collection of sublinear functions on R such
that for any sublinear κ there is a κ′ ∈ Ω and C > 0 with κ ≤ Cκ′. Such a collection exists
by the separability of the space of continued functions X → R. For each i let Ai ⊂ ∂X be
the collection ζ such that for any x ∈ X, [x, ζ) is cx(ζ)κi contracting for some cx(ζ) > 0. We
know ν(∪Ai) = 1. Moreover, each Ai is G-invariant. Thus, by ergodicity of Gy (X, ν) for
each i we have ν(Ai) ∈ {0, 1}. Thus there is a single Ai with ν(Ai) = 1. This means there
is a single sublinear function κ and a full measure A ⊂ ∂X such that for each x ∈ X, ζ ∈ A
there is a cx(ζ) > 0 with [x, ζ) cx(ζ)κ contracting, completing the proof.
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5. Genericity with respect to Patterson-Sullivan measures

Let X be a proper CAT(0) space and G < Isom(X) a rank-1 discrete group of isometries.
Assume there is some zero width geodesic with endpoints in the limit set L(G). This is
always the case when X is geodesically complete.

5.1. Patterson-Sullivan measures. The quantity

δ(G) = lim sup
R→∞

R−1 log |BRo ∩Go|

is called the critical exponent of the action G y X. It is positive for any properly dis-
continuous faithful action of a nonamenable group, and hence for any rank-1 action on a
proper CAT(0) space X (since loxodromics with disjoint endpoints generate a free group
in Isom(X). In general δ(G) may be infinite, but it is always finite when X admits some
cocompact actions by a properly discontinuous group of isometries or when G is finitely
generated.

The action Gy X is said to be divergent if the Poincare series
∑

g∈G e
−sd(go,o) diverges

at s = δ(G) and convergent otherwise. If the action Gy X is properly discontinuous and
cocompact it is necessarily divergent ([Ric17], Theorem 3).

A δ(G)-conformal density for G y X is an absolutely continuous family of finite Borel
measures νx, x ∈ X on L(G) such that

dνx/dνy(ζ) = exp(δ(G)βζ(y, x))

and gνx = νg−1x for any x, y ∈ X and g ∈ G. Any such family is determined by any one
of the measures νo, o ∈ X which we can normalize to be a probability measure. A δ(G)
conformal density always exists when G is non-elementary and δ(G) <∞. When G y X
is divergent there is a unique conformal density for G y X(see [Lin17], Theorems 10.1
and 10.2 and the remark after Theorem 10.1); it (or any of the measures comprising it) is
called the Patterson-Sullivan measure. When Gy X is cocompact, the Patterson-Sullivan
measure can be interpreted as the unique weak limit of ball averages over G orbits in the
metric on X. More precisely, for x ∈ X we may consider the family of measures on X
given by

νR,x = |Gx ∩BRx|−1
∑

g∈Gx∩BRx
Dgx

where Dx denotes the point mass at x. Considering νR,x as probability measures on the
compact space X ∪ ∂X, they converge (in the weak topology) as R → ∞ to a scalar
multiple of νPSx . In the context of CAT(0) spaces, conformal densities and Patterson-
Sullivan measures were introduced by Ricks [Ric17]. Conformal densities can be used to
construct a G and geodesic flow invariant measure on SX as follows. When G y X is
divergent, there is up to scale a unique δ(G) conformal density {νx}x∈X . The measure
νx × νx gives full measure to endpoints of zero width geodesics, and thus after taking the
product with the arc-length normalized Lebesgue measure L can be considered a measure
on SX. Using the conformal density property, we can find a G-invariant and geodesic flow
invariant Radon measure m̃ on SX in the measure class of νx × νx × dL, see [Ric17] for
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details. This measure m̃ projects to a geodesic flow invariant measure m on SX/G; both
m and m̃ are called the Bowen-Margulis measure. When the Bowen-Margulis measure on
SX/G is finite (as is the case for instance when G y X is cocompact) it is ergodic with
respect to gt ([Ric17], Theorem 3) and the Patterson-Sullivan measure is the weak limit
of ball averages as in the cocompact case [Lin20]. We summarize the properties of the
Patterson-Sullivan measure which we will use below.

Lemma 5.1. [Ric17, Theorem 3] Suppose G y X is a non-elementary divergent action
with δ(G) < ∞ on a rank-1 CAT(0) space. Assume there is some zero width geodesic
with endpoints in the limit set L(G). Assume the Bowen-Margulis measure m on SX/G
is finite. Then it is ergodic with respect to the geodesic flow and gives full weight to zero
width geodesics. Furthermore, the Patterson-Sullivan measures νx on ∂X have full support
on L(G) and has no atoms, and the Bowen-Margulis measure m̃ has full support on SGX.

We now prove Theorem 4.3 for Patterson-Sullivan measures under the assumptions of
Lemma 5.1. To do that we will show that for νPS a.e. ζ ∈ ∂X any geodesic ray converging
to ζ satisfies the condition of Lemma 3.3. Since two geodesic rays converging to the same
point of ∂X are asymptotic, and the property of being frequently contracting is invariant
under asymptotic equivalence classes, it suffices to prove that with respect to the Bowen-
Margulis measure m̃ on SX, almost every geodesic satisfies the condition of Lemma 3.3.

For any Borel V ⊂ SX/G the Birkhoff ergodic theorem and the ergodicity of m with
respect to the geodesic flow gt : t ∈ R on SX/G implies for m almost every v ∈ SX/G

lim
T→∞

|{t ∈ [0, T ] : gtv ∈ V }|/T → m(V ).

Consequently, if W is any G-invariant Borel subset of SX and W ′ ⊂ W a fundamental
domain for the G action on W then for m̃ almost every v ∈ SX

lim
T→∞

|{t ∈ [0, T ] : gtv ∈W}|/T → m(W/G).

Note, the latter quantity is strictly positive when m̃(W ) > 0.
Applying this for every L,N to the G-invariant Borel set WL,N consisting of v ∈ SX

such that [πfp(g−Lv), πfp(gLv)] c-fellow travels an N contracting geodesic we obtain for m
a.e. v ∈ SX,

lim
T→∞

|{t ∈ [0, T ] : gtv ∈WL,N}|/T → m(WL,N/G).

Any v for which the left hand side of the above equation converges to a positive number
defines a geodesic which satisfies the condition of Lemma 3.3. Thus, it suffices to show
that there is an N > 0 such that for each L > 0 we have m̃(WL,N ) > 0.

To that end, let N > 0 be large enough so that there exists an N contracting axis
v0 ∈ SX for a hyperbolic isometry γ ∈ G. Let R,K > 0. Let WL,v0 ⊂ SX be the set of
v such that d(πfp(gtv), v0) < c for all t ∈ (−L,L)}. Clearly WL,v0 ⊂ WL,N . Note WL,v0 is
an open subset of SX. Furthermore, it contains v0 ∈ SGX. Since m̃ has full support on
SGX it follows that m̃(WL,v0) > 0 and thus m(WL,N ) > 0.
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6. Stationary measures and random walks

The other family of measures on ∂X what does this mean? we are interested in are
stationary measure associated to random walks coming from finitely supported measures
µ on G which we now describe.

Let G be an infinite group. Let µ be a symmetric probability measure on G and let µZ

be the product measure on GZ.
Let T : GZ → GZ be the following invertible transformation: T takes the two-sided

sequence (hi)i∈Z to the sequence (ωi)i∈Z with ω0 = e and gn = gn−1hn for n 6= 0. Explicitly,
this means

ωn = h1 · · ·hn for n > 0

and

ωn = h−10 h−1−1 · · ·h
−1
−n+1 for n < 0.

Similarly, let µN be the product measure on GN. Let T+ : GN → GN be the transforma-
tion that takes the one-sided infinite sequence (hi)i∈N to the sequence (ωi)i∈N with ω0 = e
and ωn = ωn−1hn for n 6= 0. Explicitly, for n > 0 this means

ωn = h1 · · ·hn.
Let P be the pushforward measure T∗µ

Z and P the pushforward measure T+∗µ
N.

The measure P describes the distribution of µ sample paths, i.e. of products of indepen-
dent µ-distributed increments. Let µ̂ be the measure on G given by µ̂(g) = µ(g−1). Let P̂
be the pushforward measure T+∗µ̂

N. The measure space (GZ, P ) is naturally isomorphic to

(GN, P )⊗ (GN, P̂ ) via the map sending the bilateral path ω to the pair of unilateral paths
((ωn)n∈N, (ω−n)n∈N).

Let σ : GZ → GZ be the left Bernoulli shift: σ(ω)n = ωn+1. By basic symbolic dynam-
ics, σ is invertible, measure preserving and ergodic with respect to µZ. Therefore, when
restricted to sequences with e at the 0th coordinate,

U = T ◦ σ ◦ T−1

is invertible, measure preserving and ergodic with respect to P . Note that for each n ∈ Z,

(Uω)n = ω−11 ωn+1

and more generally

(Ukω)n = ω−1k ωn+k.

Suppose G acts continuously on an infinite Hausdorff space B. A Borel probability
measure ν on B is called (G,µ) stationary if

ν(A) =
∑
g∈G

ν(g−1A)µ(g)

for all Borel A ⊂ B. Suppose now we have a bordification Z = Y ∪ B of a metric space
X, such that for any basepoint o ∈ Y and P almost every sample path ω = (ωn)n∈N the
sequence ωno converges to a point ω∞ ∈ B independent of the basepoint o. The probability
measure on B given by ν(A) = P (ω : ω∞ ∈ A) is then the unique (G,µ) stationary measure
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on B; moreover for P a.e. ω ∈ GN the pushforward measures ω∗nν weakly converges to an
atom concentrated at some ω∞ ∈ B. A space B with a stationary measure ν satisfying the
last condition is called a (G,µ) boundary. A (G,µ) boundary (B, ν) is said to be a Poisson
boundary of (G,µ) if it is maximal in the sense that for any other (G,µ) boundary (B′, ν ′)
there is a G equivariant measurable surjection B → B′. The Poisson boundary is unique
up to G-equivariant measurable isomorphism.

Lemma 6.1. Suppose Gy B is a minimal action on a compact Hausdorff space such that
every G orbit in B is infinite and ν a stationary measure on X. Then ν has no atoms and
has full support on B.

is there a citation for this? Karlsson and Margulis [KM99] showed that under mild con-
ditions the visual boundary of a CAT(0) space provides a model for the Poisson boundary
of a group acting on the space.

Theorem 6.2. [KM99] Let X be a CAT(0) space, o ∈ X and Gy X a nonamenable group
acting on X by isometries with bounded exponential growth. Let µ be a probability measure
on G whose finite support generates G as a semigroup. Then for P = Pµ almost every
ω ∈ GN, ωno converges to a point in ∂X. Moreover (∂X, ν) is a model for the Poisson
boundary of (G,µ) where ν is the unique µ stationary measure on ∂X.

Lemma 6.3. [Kai00] The action of any group G on the square of it’s Poisson boundary
with respect to the square of the stationary measure associated to a symmetric random walk
preserves the measure class and is ergodic.

If X is a rank-1 CAT(0) space, and G y X a rank-1 group action then for any c > 0
the pairs of points of L(G) which are the endpoints of a rank-1 which does not bound a
flat strip of width > c form a G-invariant open subset of L(G). Consequently if ν is any
nonatomic probability measure on L(G) ⊂ ∂X with full support on L(G) such that the G
action on ∂X × ∂X preserves the measure class of ν × ν and is ergodic with respect to it,
then there is a c ≥ 0 such that ν × ν gives full weight to pairs of points bounding strips of
width at least c.

We thus have:

Lemma 6.4. Let X be a geodesically complete rank-1 CAT(0) space and Gy X a rank-1
group action. Let µ be a symmetric probability measure on G whose finite support generates
G and ν the associated stationary measure on ∂X. Then ν × ν is ergodic with respect to
the G action and for some c > 0 gives full weight to pairs of points defining geodesics of
width at most c.

By Kingman’s ergodic theorem and the nonamenability of G there is an l = l(µ) > 0
such that l(µ) = limn→∞ d(ωno, o)/n for P -a.e. ω, called the drift of the random walk with
respect to d. Karlsson-Margulis proved that for P almost every ω there is a parametrized
unit speed geodesic τ ∈ SX such that d(τ(ln), ωno)/n→ 0.

Our goal is to show the following.

Theorem 6.5. Let X, ν, µ be as in Lemma 6.4. Then for any basepoint o ∈ X and ν
almost every ζ ∈ ∂X the geodesic ray τo,ζ through o converging to ζ is sublinearly Morse.
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We will prove this by showing that for ν a.e. ζ, τo,ζ is frequently contracting. In fact,
we will prove a stronger statement:

Proposition 6.6. Let g0 ∈ G be a rank-1 periodic element and γ0 its axis. Fix a basepoint
o ∈ X. Then there is a K > 0 such that for ν a.e. ζ the geodesic ray τo,ζ satisfies the
following. For any b > a > 0 and L > 0 there is an R0 > 0 such that for any R > R0 there
is a g ∈ G such that the segment τ([aR, bR]) contains a subsegment of NK(gγ0) of length
L.

For each ζ1, ζ2 ∈ ∂X and p ∈ X, let Ψ(ζ1, ζ2) = E−1(ζ1, ζ2) be the set of unit speed
geodesics with endpoints ζ1, ζ2 ∈ ∂X. Let Ψ(ζ1, ζ2, p) be the set of unit speed parametriza-
tions of such geodesics γ such that γ(0) is at minimal distance from p. We can make this
choice in a G equivariant way, i.e. so that gΨ(ζ1, ζ2, p) = Ψ(gζ1, gζ2, gp). For a bilateral
sample path ω converging to ω−, ω+ ∈ ∂X write Ψ(ω, p) and Ψ(ω) instead of Ψ(ω−, ω+, p)
and Ψ(ω+, ω−). for the image of the geodesic in X. Similarly for an unparametrized biin-
finite geodesic γ and p ∈ X we write γp for the unit speed parametrization with γp(0) at
minimum distance from p.

Proposition 6.6 will follow from the following bilateral statement.

Proposition 6.7. Let g0 ∈ G be a rank-1 periodic element and γ0 its axis. Fix a base-
point o ∈ X. Then there is a K > 0 such that for P a.e. biinfinite sample path ω
any parametrization of any biinfinite geodesic γ ∈ Ψ(ω) satisfies the following. For any
∞ > b > a > −∞ and L > 0 there is an R0 > 0 such that for any R > R0 there is a g ∈ G
such that the segment γ([aR, bR]) contains a subsegment of NK(gγ0) of length L.

The remainder of this section is devoted to the proof of Proposition 6.7.
Let Ω(M,K,R) be the set of sample paths ω ∈ GZ such that, for all γ ∈ Ψ(ω) ,

we have d(o, γ) < R/10 and γω,o(t − M, t + M) ⊂ NK(gγ0) for some g ∈ G and t ∈
(−R/2 +M,R/2−M).

Lemma 6.8. There is a K > 0 such that for all M > 0 there is an function f with
limR→∞ f(R) = 0 and P (Ω(M,K,R)) > 1− f(R).

We first continue with the proof of Proposition 6.7 assuming Lemma 7.2 and will prove
Lemma 7.2 afterwards.

Proof of Proposition 6.7 assuming Lemma 7.2. Assume without loss of generality that a >
0. Let Ω0 ⊂ GZ denote the P full measure set of all ω such that d(ω±io, o)/i→ l and such
that ω±io → ζ± ∈ ∂X with (ζ−, ζ+) having width at most c. Note P (Ω0) = 1. Consider
ω ∈ Ω0. Choose R > 0 large enough so that

1− f(R) > (b− a)/(10a+ 10b)

Note, U iω ∈ Ω(M,K,R) if and only if for all γ ∈ Ψ(ω) d(ωio, γ) < R/10 and γωio(t −
M, t + M) ⊂ NK(gγ0) for some g ∈ G and t ∈ (−R/2 + M,R/2 −M). This implies that
for all γ ∈ Ψ(ω)

γo(ti −M, ti +M) ⊂ NKgiγ0
for some gi ∈ G and ti with |ti − d(ωio, γo(0))| < R/10.
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Let si(γ) = d(ωio, γo(0)). Let

d = sup{d(o, go) | g ∈ supp(µ)}.

Note since d(ωio, ωi+1o) ≤ d for all i, for every t > d(o, γ) there is some i(t) with |t −
si(t)(γ)| < d.

Hence, for large enough (depending on ω) n, for all γ ∈ Ψ(ω), if there is an i with

U iω ∈ Ω(M,K,R)

and

(2a+ b)n/3 ≤ si(γ) ≤ (a+ 2b)n/3

then γo([an, bn]) has a connected segment in NK(gγ0) of length M for some g ∈ G. More-
over, si(γ)/i→ l for all γ ∈ Ψ(ω). Thus, for large enough n, we have

(2a+ b)n/3 ≤ si(γ) ≤ (a+ 2b)n/3

for every i with
(3a+ 2b)n

5l
≤ i ≤ (2a+ 3b)n

5l
.

Hence, unless γo([an, bn]) has a connected segment in NK(gγ0) of length M for some
g ∈ G, we have

U iω /∈ Ω(M,K,R)

for any
(3a+ 2b)n

5L
≤ i ≤ (2a+ 3b)n

5L
If this holds for infinitely many n we have

lim inf
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(M,K,R)}|
N

≤ 1− b− a
2a+ 3b

.

On the other hand, by the Birkhoff ergodic theorem, for P ω we have:

lim
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(M,K,R)}|
N

= P (Ω(M,K,R)) > 1− (b− a)/(10a+ 10b)

giving a contradiction. �

Finally, we prove Lemma 7.2.

Proof of Lemma 7.2. Clearly the P measure of ω ∈ GZ such that d(o, [ω−, ω+]) < R/10
converges to 1 with R. Thus it suffices to show that for each M > 0 the P measure of ω
such that γω,o(t −M, t + M) ⊂ NK(gγ0) for some g ∈ G and t ∈ (−R/2 + M,R/2 −M)
converges to 1 as R → ∞. Let Λ(M,K) be the set of biinfinite sample paths ω such that
d(γo(t), γ0(t)) < K for all γ ∈ Ψ(ω).

Claim 6.9. There is a K > 0 such that P (Λ(M,K)) > 0 for all M .
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Proof. Let K be large enough so that the periodic rank one geodesic γ0 passes within K/4
of o and has width less than K/4. Let γ−, γ+ ∈ ∂X be its limit points and parametrize γ0
such that γ0(0) is at minimal distance to o. Let c′ be the width of the flat strip bounded by
γ0 By [Bal95] for each M > 0 there are neighborhoods A± of γ± in ∂X such that any pair
in U− × U+ can be connected by a geodesic of width less than K/2 which passes within
K/2 of γ0(t) for all |t| < 4M . Moreover, if ζ−n → γ− and ζ+n → γ+ and γn is a geodesic
connecting ζ±n then γn converges locally uniformly to γ0. Thus we have d(γ(t), γ0(t)) < K
for |t| < M for any geodesic γ, parametrized with γ(0) at minimal distance to o, connecting
pairs of points in U− ×U+. Let Λ′(M,K) be the set of all sample paths ω with ω± ∈ U±.
By definition, Λ′(M,K) ⊂ Λ(M,K). Since the U± are open neighborhoods of γ0± ∈ L(G)
in ∂X and the harmonic measure ν has

full support on the limit set L(G) ⊂ ∂X, we have ν(U±) > 0 and hence P (Λ′(M,K)) > 0
and thus P (Λ(M,K)) > 0. �

Note, U iω ∈ Λ(M,K) if and only if d(γo(t), ωiγ0(t)) < K for all γ ∈ Ψ(ω). Note,
d(o, ωio) ≤ di and hence if

U iω ∈ Λ(M,K)

for some i with

0 ≤ i ≤ R−M − 2K

2d
then for all γ ∈ Ψ(ω). γo([−R,R]) contains a length M segment in NKgγ0 for some
g ∈ G. By the Birkhoff ergodic theorem, the P measure of sample paths ω such that
U iω /∈ Λ(M,K) for all i with

0 ≤ i ≤ R−M − 2K

2d
converges to 0 with R completing the proof. �

7. Genericity of sublinearly Morse geodesics in Teichmüller space

In this section we consider the Teichmüller space T (S) of a closed genus g ≥ 2 surface
S with the Teichmüller metric d = dT . There is a natural Thurston compactification of
T (S) by the space PML of all measured projective laminations on S. Any Teichmüller
geodesic ray with a uniquely ergodic vertical foliation converges to its projective class in
the Thurston compactification. Filling pairs of laminations are an open subset of PML×
PML, and any such pair determines a Teichmüller geodesic with corresponding vertical
and horizontal measured foliations. Moreover, if a sequence of such pairs converges to the
pseudo-Anosov pair (φ−, φ+), then the corresponding geodesics converge locally uniformly
to γφ−,φ+,o. Moreover, any distinct pair of elements of PML is filling as long as at least
one element of it is uniquely ergodic. We show that for several natural classes of measures
on PML the limit points of sublinearly contracting geodesics are generic. The measures
we consider are the Thurston measure on PMF (which can be considered as the analogue
of the Lebesgue or Patterson-Sullivan measure on the boundary of a hyperbolic manifold)
and stationary measures coming from finitely supported random walks on the mapping
class group MCG(S).
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7.1. Thurston measures on PML. Let ν be a normalized Thurston measure on PML.
The measure ν × ν gives full measure to uniquely ergodic foliations, and thus after taking
the product with the arc-length (with respect to Teichnueller metric) normalized Lebesgue
measure L can be considered a measure on the space Q1 of unit area quadratic differentials,
which can be seen as the (co)tangent bundle to Teichmüller space. We can find a G-
invariant and Teichmüller geodesic flow invariant Radon measure m̃ on Q1 in the measure
class of ν × ν × dL, see [?] what’s this paper? for details. This measure m̃ projects to
a finite Teichmüller geodesic flow invariant and ergodic measure m on Q1/G, called the
Masur-Veech measure; both m and m̃ are called the Bowen-Margulis measure. The proof
now proceeds as for the Patterson-Sullivan measure in the CAT(0) setting.

7.2. Stationary measures on PML. A subgroup of MCG(S) is called non-elementary if
it contains two pseudo-Anosov elements with disjoint fixed point sets in PML. A measure
µ on G = MCG(S) is said to be non-elementary if the semigroup generated by its support
is a non-elementary subgroup.

Let µ be such a symmetric finitely supported non-elementary measure, G < MCG(S) the
subgroup generated by its support, and P , P the induced Markov measures on unilateral
and bilateral sample paths respectively. Kaimanovich-Masur [KM96] proved that for P -
almost every ω, and every o ∈ T (S), ωno converges to a uniquely ergodic point ω∞ ∈ PML.
In other words, there is a P -almost everywhere defined measurable map bnd : GN → PML
sending ω to limn→∞ ωno ∈ PML. The measure on PML defined by

ν = bnd∗P = lim
n→∞

µ∗n

is the unique µ stationary measure on PML. In fact, (PML, ν) is a model for the Poisson
boundary of (G,µ). Moreover, ν gives full weight to uniquely ergodic foliations and has
full support on the limit set L(G) ⊂ PML of the group G < MCG(S) generated by the
support of µ [KM96]. Let l = limn→∞ d(ωno, o)/n (for P a.e. ω) be the drift of the µ
random walk. Tiozzo [Tio12] proved that P a.e. ω sublinearly tracks a geodesic τ in T (S):

lim
n→∞

d(τ(ln), ωno)

n
= 0

for any geodesic ray τ converging to ω∞ ∈ PML.
We prove the following

Proposition 7.1. Let g0 ∈ G be a pseudo-Anosov element and γ0 its axis in Teich(S).
Fix a basepoint o ∈ Teich(S). Then there is a K > 0 such that for P a.e. biinfinite sample
path ω (any unit speed parametrization of) the biinfinite geodesic γω satisfies the following.
For any ∞ > b > a > −∞ and L > 0 there is an R0 > 0 such that for any R > R0 there is
a g ∈ G such that the segment γ([aR, bR]) contains a subsegment of NK(gγ0) of length L.

Let Ω(M,K,R) be the set of sample paths ω ∈ GZ such that ω± ∈ PML are uniquely
ergodic, d(o, γω) < R/10 and γω,o(t −M, t + M) ⊂ NK(gγ0), for some g ∈ G and t ∈
(−R/2 +M,R/2−M).
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Lemma 7.2. There is a K > 0 such that for all M > 0 there is an function f with
limR→∞ f(R) = 0 and P (Ω(M,K,R)) > 1− f(R).

We first continue with the proof of Proposition 6.7 assuming Lemma 7.2 and will prove
Lemma 7.2 afterwards.

Proof of Proposition 6.7 assuming Lemma 7.2. Without loss of generality, let us assume
that a > 0. Let Ω0 ⊂ GZ denote the set of all ω such that

d(ω±io, o)/i→ l

and such that ω±io→ ζ± ∈ ∂X which are distinct and uniquely ergodic. Note P (Ω0) = 1.
Consider ω ∈ Ω0. Choose R > 0 large enough so that

1− f(R) > (b− a)/(10a+ 10b)

Note, U iω ∈ Ω(M,K,R) if and only if for all γ ∈ Ψ(ω),
we have d(ωio, γω) < R/10 and

γω,ωio(t−M, t+M) ⊂ NK(gγ0) for some g ∈ G
and we also have t ∈ (−R/2 +M,R/2−M). This implies that

γω,o(ti −M, ti +M) ⊂ NKgiγ0

for some gi ∈ G and ti with |ti − d(ωio, γω,o(0))| < R/10.
Let si(ω) = d(ωio, γω,o(0)). Let

d = sup{d(o, go) | g ∈ supp(µ)}.
Note since d(ωio, ωi+1o) ≤ d for all i, for every t > d(o, γω) there is some i(t) with

|t− si(t)(γ)| < d.

Hence, for large enough (depending on ω) n, for all γ ∈ Ψ(ω), if there is an i with

U iω ∈ Ω(M,K,R)

and
(2a+ b)n/3 ≤ si(γω) ≤ (a+ 2b)n/3

then γω,o([an, bn]) has a connected segment in NK(gγ0) of length M for some g ∈ G.
Moreover, si(ω)/i→ l. Thus, for large enough n, we have

(2a+ b)n/3 ≤ si(γ) ≤ (a+ 2b)n/3

for every i with
(3a+ 2b)n

5l
≤ i ≤ (2a+ 3b)n

5l
.

Hence, unless γω,o([an, bn]) has a connected segment in NK(gγ0) of length M for some
g ∈ G, we have

U iω /∈ Ω(M,K,R)

for any
(3a+ 2b)n

5L
≤ i ≤ (2a+ 3b)n

5L
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If this holds for infinitely many n we have

lim inf
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(M,K,R)}|
N

≤ 1− b− a
2a+ 3b

.

On the other hand, by the Birkhoff ergodic theorem, for P ω we have:

lim
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(M,K,R)}|
N

= P (Ω(M,K,R)) > 1− (b− a)/(10a+ 10b)

giving a contradiction. �

Finally, we prove Lemma 7.2.

Proof of Lemma 7.2. Clearly the P measure of ω ∈ GZ such that d(o, [ω−, ω+]) < R/10
converges to 1 with R. Thus it suffices to show that for each M > 0 the P measure of ω
such that γω,o(t −M, t + M) ⊂ NK(gγ0) for some g ∈ G and t ∈ (−R/2 + M,R/2 −M)
converges to 1 as R → ∞. Let Λ(M,K) be the set of biinfinite sample paths ω such that
d(γω,o(t), γ0(t)) < K.

Claim 7.3. There is a K > 0 such that P (Λ(M,K)) > 0 for all M .

Proof. Let K be large enough so that the pseudo-Anosov axis γ0 passes within K/2 of
o. Let γ−, γ+ ∈ ∂X be its limit points and parametrize γ0 such that γ0(0) is at minimal
distance to o. There are neighborhoods A± of γ± in PML such that any pair in U− ×U+

determines a geodesic which passes within K/2 of γ0(t) for all |t| < 4M .
Moreover, if ζ−n → γ− and ζ+n → γ+ and γn is a geodesic connecting ζ±n then γn

converges locally uniformly to γ0. Thus we have d(γ(t), γ0(t)) < K for |t| < M for any
geodesic γ, parametrized with γ(0) at minimal distance to o, connecting pairs of points in
U− × U+. Let Λ′(M,K) be the set of all sample paths ω with ω± ∈ U±. By definition,
Λ′(M,K) ⊂ Λ(M,K). Since the U± are open neighborhoods of γ0± ∈ L(G) in ∂X and the
harmonic measure ν has full support on the limit set L(G) ⊂ PML, we have ν(U±) > 0
and hence

P (Λ′(M,K)) > 0,

thus P (Λ(M,K)) > 0. �

Note, U iω ∈ Λ(M,K) if and only if d(γω,ωio(t), γ0(t)) < K. Note, d(o, ωio) ≤ di is this
a typo? and hence if

U iω ∈ Λ(M,K)

for some i with

0 ≤ i ≤ R−M − 2K

2d
then γω,o([−R,R]) contains a length M segment in NKgγ0 for some g ∈ G. By the Birkhoff

ergodic theorem, the P measure of sample paths ω such that U iω /∈ Λ(M,K) for all i with

0 ≤ i ≤ R−M − 2K

2d
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converges to 0 with R completing the proof. �

8. Identification of the Poisson Boundary

The following is proved in Theorem B of [QRT22].

Theorem 8.1. Let G be a nonamenable group acting properly discontinuously by isometries
on a proper geodesic metric space (X, d). Let µ be a finitely supported measure on G whose
support generates G as a semigroup. Assume that µ almost every sample path ω sublinearly
tracks some κ contracting geodesic τ , i.e. d(ωno, τ)/n→ 0 for some and equivalently every
o ∈ X. Then the κ-contracting boundary with the unique µ stationary probability measure
is a model for the Poisson boundary of (G,µ).

It is known that when X is CAT(0) or Teichmüller space and the semigroup G generated
by the support of µ is non-elementary, almost every µ sample path sublinearly tracks some
X geodesic ray τω ([Tio12] for Teichmüller space and [?] for CAT(0) spaces). Our results
above show that there is a sublinear function κ such that for a.e. sample path ω, ωno
converges to a ζ ∈ ∂X such that any geodesic [o, ζ) is κ sublinear. Thus τω is almost surely
κ-sublinear.
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