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Abstract. We study Veech groups associated to the pseudo-Anosov mon-
odromies of fibers and foliations of a fixed hyperbolic 3-manifold. Assum-
ing Lehmer’s Conjecture, we prove that the Veech groups associated to fibers
generically contain no parabolic elements. For foliations, we prove that the
Veech groups are always elementary.

1. Introduction

A pseudo-Anosov homeomorphism f : S Ñ S on a surface determines a complex
structure and holomorphic quadratic di↵erential, pX, qq, up to Teichmüller defor-
mation, for which the vertical and horizontal foliations are the stable and unstable
foliations of f . The pseudo-Anosov generates an infinite cyclic subgroup of the full
group of orientation preserving a�ne homeomorphisms, A↵`pX, qq.

For a finite type surface S, we say that the pseudo-Anosov homeomorphism f

is lonely if xfy † A↵`pS, qq has finite index. The motivation for this paper is the
following; see e.g. Hubert-Masur-Schmidt-Zorich [HMSZ06] and Lanneau [Lan17]

Conjecture 1.1 (Lonely p-As). There exist lonely pseudo-Anosov homeomor-
phisms. In fact, lonely pseudo-Anosov homeomorphisms are generic.

There is not an agreed upon notion of “generic”, and some care must be taken:
work of Calta [Cal04] and McMullen [McM03a, McM03b] shows that no pseudo-
Anosov homeomorphism on a surface of genus 2, with orientable stable/unstable
foliation is lonely. In fact, in this case, not only are the pseudo-Anosov homeomor-
phisms not lonely, but their Veech groups always contain parabolic elements.

In this paper, we consider infinite families of pseudo-Anosov homeomorphism
arising as follows; see §2.1. Suppose f : S Ñ S is a pseudo-Anosov homeomor-
phism of a finite type surface S and Mf the mapping torus (which is hyperbolic by
Thurston’s Hyperbolization Theorem [Ota98]). The connected cross sections of the
suspension flow are organized by their cohomology classes (up to isotopy), which are
primitive integral classes in the cone on the open fibered face F Ä H

1
pM,Rq of the

Thurston norm ball containing the Poincaré-Lefschetz dual of the fiber S. Given
such an integral class ↵, the first return map to the cross section S↵ is a pseudo-
Anosov homeomorphism f↵ : S↵ Ñ S↵. When b1pMq ° 1, there are infinitely many
such pseudo-Anosov homeomorphisms; in fact, |�pS↵q| is a linear function of ↵, and
hence tends to infinity with ↵.

We let ↵̄ P F denote the projection of the primitive integral class ↵ in the cone
over F , and let FQ be the set of all such projections, which is precisely the (dense)
set of rational points in F .
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Question 1.2. Given a fibered hyperbolic 3–manifold and fibered face F , are the
pseudo-Anosov homeomorphism f↵ for ↵̄ P FQ generically lonely?

We will provide two pieces of evidence that the answer to this question is ‘yes’.
Write A↵`pX↵, q↵q for the orientation preserving a�ne group containing f↵; see
§2.3 for more details.

Theorem 1.3. Suppose F is the fibered face of a fibered hyperbolic 3–manifold.
Assuming Lehmer’s Conjecture, the set of ↵̄ P FQ such that A↵`pX↵, q↵q contains
a parabolic element is discrete in F .

In certain examples, the set of classes whose associated Veech group contains
parabolics is actually finite (again, assuming Lehmer’s conjecture); see Theorem 4.2.
In §3 we describe some explicit computations that illustrate this finite set.

Much of the defining structure survives for non-integral classes ↵ P F ´ FQ; see
§2.2 for details. Briefly, we first recall that every ↵ P F ´ FQ is represented by a
closed 1–form !↵ which is positive on the vector field generating the suspension flow.
The kernel of !↵ is tangent to a foliation F↵, and the flow can be reparameterized
to send leaves of F↵ to other leaves. There is no longer a first return time, but
rather a higher rank abelian group of return times, H↵, to any given leaf S↵ of
F↵. Work of McMullen [McM00] associates a leaf-wise complex structure and
quadratic di↵erential pX↵, q↵q to each ↵ P F ´ FQ so that the leaf-to-leaf maps
of the flow are all Teichmüller maps. For every leaf S↵ of F↵, the return maps
to S↵ thus determine an isomorphism from H↵ † R to a subgroup we denote
H

A↵
↵

† A↵`pX↵, q↵q, an abelian group of pseudo-Anosov elements. Our second
piece of evidence for a positive answer to Question 1.2 is the following.

Theorem 1.4. If F is a fibered face of a closed, fibered, hyperbolic 3–manifold, then
for all ↵ P F ´ FQ, and any leaf S↵ of F↵, the abelian group H

A↵
↵

† A↵`pX↵, q↵q

has finite index.

For ↵ P F ´ FQ, the leaves S↵ are infinite type surfaces. In general, there is
much more flexibility in constructing a�ne groups for infinite type surfaces, and
exotic groups abound. Indeed, work of Przyticki-Schmithusen-Valdez [PSV11] and
Ramı́rez-Valdez [RMV17] proves that any countable subgroup of GL2pRq without
contractions is the derivative-image of some a�ne group. (See also Bowman [Bow13]
for a “naturally occurring” lonely pseudo-Anosov homeomorphism on an infinite
type surface of finite area.) Theorem 1.4 says that for the leaves S↵ of the foliations
and their associated quadratic di↵erentials, the situation is much more rigid.
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versations, and Ferrán Valdez for his interest in this project. The first author was
partially supported by NSF grant DMS-2106419. The second author was partially
supported by NSERC Discovery grant, RGPIN 06486. The fifth author was par-
tially supported by an NSERC-PDF Fellowship.

2. Definitions and background

2.1. Fibered 3–manifolds. Here we explain the set up and background for our
work in more detail. For a pseudo-Anosov homeomorphism f : S Ñ S of a finite
type surface S, let �pfq denote its stretch factor (also called its dilatation); see
[FLP79]. We write

M “ Mf “ S ˆ r0, 1s{px, 1q „ pfpxq, 0q
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to denote the mapping torus of the pseudo-Anosov homeomorphism f . The sus-
pension flow  s of f is generated by the vector field ⇠ “

B
Bt , where t is the coor-

dinate on the r0, 1s factor. Alternatively, we have the local flow of the same name
 spx, tq “ px, t ` sq on S ˆ r0, 1s, defined for t, s ` t P r0, 1s, which descends to the
suspension flow.

A cross section (or just section) of the flow is a surface S↵ Ä M transverse to
⇠, such that for all x P S↵,  spxq P S↵ for some s ° 0. If spxq ° 0 is the smallest
such number, then the first return map of  s is the map f↵ : S↵ Ñ S↵ defined by
f↵pxq “  spxqpxq for x P S↵. Note that Sp“ S ˆ t0uq Ä M is a section, and the
first return map to S is precisely the map f “  1|S .

Cutting open along an arbitrary section S↵ we get a product S↵ ˆ r0, 1s where
the slices txu ˆ r0, 1s are arcs of flow lines. Thus, M can also be expressed as the
mapping torus of f↵, or alternatively, M fibers over the circle with monodromy f↵.
Up to isotopy, the fiber S↵ is determined by its Poincaré-Lefschetz dual cohomology
class ↵ “ rS↵s P H

1
pM ;Zq Ä H

1
pM ;Rq “ H

1
pMq. To see how these are organized,

we first recall the following theorem of Thurston [Thu86]

Theorem 2.1. For M “ Mf as above, there is a finite union of open, convex,
polyhedral cones C1, . . . , Ck Ä H

1
pMq such that ↵ P H

1
pM ;Zq is dual to a fiber in a

fibration over S1 if and only if ↵ P Cj for some j. Moreover, there is a norm }¨}T on
H

1
pMq so that for each Cj, } ¨}T restricted to Cj is linear, and if ↵ P Cj XH

1
pM ;Zq

then }↵}T is the negative of the Euler characteristic of the fiber dual to ↵.

The unit ball B of } ¨ }T is a polyhedron, and each Cj is the cone over the interior
of a top dimensional face Fj of B.

The cones in the theorem are called the fibered cones of M and the Fj the fibered
faces ofB. It follows from Thurston’s proof of Theorem 2.1 that each of the sections
S↵ of p sq described above must lie in a single one of the fibered cones C over a
fibered face F . The following theorem elaborates on this, combining results of Fried
from [Fri83, Fri82].

Theorem 2.2. For M “ Mf as above, there is a fibered cone C Ä H
1
pMq such

that ↵ P H
1
pM ;Zq is dual to a section of p sq if and only if ↵ P C. Moreover, there

is a function h : C Ñ R` which is continuous, convex, and homogenous of degree
´1, with the following properties.

‚ For any ↵ P C X H
1
pM ;Zq, f↵ is pseudo-Anosov and hp↵q “ logp�pf↵qq.

‚ For any t↵nu Ä C with ↵n Ñ BC, we have hp↵nq Ñ 8;

We let CZ Ä C denote the primitive integral classes in the fibered cone C; that
is, the integral points which are not nontrivial multiples of another element of
H

1
pM ;Zq. These correspond precisely the the connected sections of p sq.
McMullen [McM00] refined the analysis of h, proving for example that it is actu-

ally real-analytic. For this, he computed the stretch factors using his Teichmüller
polynomial ⇥C . This polynomial

⇥C “

ÿ

gPG
agg

is an element of the group ring ZrGs where G “ H1pM ;Zq{torsion. For ↵ P CZ, the
specialization of the Teichmüller polynomial is

⇥↵

C ptq “

ÿ

gPG
agt

↵pgq
P Zrt

˘1
s
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where we view ↵ P H
1
pM ;Zq – HompG;Zq. Further, G – H ‘ Z where H “

HompH
1
pS,Zq

f
,Zq – Zm and H

1
pS,Zq

f are the f–invariant cohomology classes.
So we can regard ⇥C as a Laurent polynomial on the generators x1, x2, . . . , xm

of H and the generator u of Z. Then specialization to the dual of an element
pa1, a2, . . . , am, bq P C X H

1
pM ;Zq amounts to setting xi “ t

ai for 1 § i § m

and u “ t
b. McMullen proves that the specializations and the pseudo-Anosov first

return maps are related by the following.

Theorem 2.3. For any ↵ P CZ, the stretch factor �pf↵q is a root of ⇥↵

C with the
largest modulus.

Combining the linearity of } ¨ }T on C together with the homogeneity of h, we
have the following observation of McMullen; see [McM00].

Corollary 2.4. The function ↵ fiÑ }↵}T hp↵q is continuous and constant on rays
from 0. In particular, if K Ä C is any compact subset, then } ¨ }T hp¨q is bounded on
R`K.

The key corollary for us is the following, also observed by McMullen from the
same paper.

Corollary 2.5. If t↵nun Ä CZ is any infinite sequence of distinct elements, then
|�pS↵nq| Ñ 8 and if the rays R`↵n do not accumulate on BC, then

logp�pf↵nqq —
1

|�pS↵nq|
.

In particular, �pf↵nq Ñ 1.

Remark 2.6. One can sometimes promote the final conclusion to any infinite
sequence of distinct elements, without the assumption about non-accumulation to
BC; see the examples in §3. This is not always the case, and the accumulation set of
stretch factors can be fairly complicated, as described by work of Landry-Minsky-
Taylor [LMT21].

2.2. Foliations in the fibered cone. Fried’s work described above [Fri83, Fri82]
implies that any ↵ P C may be represented by a closed 1–form !↵ for which !↵p⇠q °

0 at every point of M . For integral classes, !↵ is the pull-back of the volume form
from the fibration over the circle R{Z, and in general, !↵ is a convex combination of
such 1–forms. The kernel of !↵ defines a foliation F↵ transverse to ⇠ whose leaves
are injectively immersed surfaces S↵ Ä M . We consider the reparameterized flow
t 

↵

s
u defined by scaling the generating vector field ⇠ by ⇠{!↵p⇠q. Then for every

leaf S↵ Ä M of F↵ and for every s P R, the image by the flow  
↵

s
pS↵q is another

leaf of F↵. The subgroup H↵ † R mentioned in the introduction is precisely the
set of return times of  ↵

s
to S↵. As such, H↵ acts on S↵ so that s P H↵ acts by

s ¨ x “  
↵

s
pxq, for all x P S↵.

The group H↵ – Zn for some n “ n↵ § b1pMq, and can alternatively be defined
as the set of periods of ↵ (i.e. the ↵–homomorphic image of H1pM ;Zq). A leaf S↵

is a closed surface, and in fact a fiber as above if and only if n↵ “ 1 in which case
H↵ is a discrete subgroup of R and ↵̄ P FQ. On the other hand, n↵ • 2 if and only
if the group of return times H↵ is indiscrete, and so S↵ is dense in M .
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2.3. Teichmüller flows and Veech groups. In [McM00], McMullen defines a
conformal structure and quadratic di↵erential, pX↵, q↵q, on the leaves S↵ of the
foliation F↵, for all ↵ P C, with the following properties. For each s P R and leaf S↵,
the leaf-to-leaf map  ↵

s
: S↵ Ñ  

↵

s
pS↵q is a Teichmüller map with initial/terminal

quadratic di↵erentials given by q↵ on the respective leaves. In fact, there exists some

K↵ ° 1 so that  ↵

s
is a K

|s|
↵ –Teichmüller map, and hence K

2|s|
↵ –quasi-conformal.

Remark 2.7. The notation pX↵, q↵q is somewhat ambiguous: this really denotes
a family of structures, one on every leaf, though we abuse notation and also use
this same notation to denote the restriction to any given leaf.

The vertical and horizontal foliations of q↵ on the leaves S↵ of F↵ are obtained by
intersecting with a fixed singular foliation on the 3–manifold; namely, the suspension
of the unstable/stable foliations for the original pseudo-Anosov homeomorphism
f . In particular, the cone points (i.e. zeros) of q↵ are precisely the intersections
of S↵ with the  s–flowlines through the cone points on the original surface S.
Consequently, the cone points are isolated, and the cone angles are bounded by
those of the original surface, and are hence bounded independent of ↵.

For s P H↵,  ↵

s
: S↵ Ñ S↵ is (a remarking) of the Teichmüller map, and thus an

a�ne pseudo-Anosov homeomorphism with respect to q↵. In this way, we obtain an
isomorphism from H↵ to a subgroup H

A↵
↵

† A↵`pX↵, q↵q, the group of orientation
preserving a�ne homeomorphisms of the leaf S↵ with respect to pX↵, q↵q. The
derivative with respect to the preferred coordinates defines a map

D↵ : A↵`pX↵, q↵q Ñ GL`
2 pRq{ ˘ I,

which is called the Veech group of pX↵, q↵q. A parabolic element of A↵`pX↵, q↵q is
one whose image by D↵ is parabolic.

Remark 2.8. The preferred coordinates for a quadratic di↵erential are only defined
up to translation and rotation through angle ⇡, so the derivative is only defined up
to sign. If all a�ne homeomorphisms are area preserving (e.g. if the surface has
finite area) then the derivative maps to PSL2pRq “ SL2pRq{ ˘ I.

Since the vertical/horizontal foliations are the stable/unstable foliations, the
image of H

A↵
↵

, which we denote H
D

↵
“ D↵pH

A↵
↵

q is contained in the diagonal
subgroup of PSL2pRq:

H
D

↵
† � “

"ˆ
a 0
0 1

a

˙
P SL2pRq

ˇ̌
ˇ̌ a ° 0

*
{ ˘ I.

Define SA↵pX↵, q↵q † A↵`pX↵, q↵q to be the area preserving subgroup of ori-
entation preserving a�ne homeomorphisms; this is the preimage of PSL2pRq under
D↵. In particular, HA↵

↵
† SA↵pX↵, q↵q.

2.4. Trace fields. A number field is totally real if the image of every embedding
into C lies in R. Hubert-Lanneau [HL06] proved the following.

Theorem 2.9. If a nonelementary Veech group contains a parabolic element, then
the trace field is totally real.

A pseudo-Anosov f being lonely implies that there are no parabolic elements in
the Veech group, but not conversely; see [HLM09].

McMullen [McM03b, Corollary 9.6] proved the following fact about the trace
field of a Veech group; see also Kenyon-Smillie [KS00].
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Theorem 2.10. The trace field of a Veech group containing a pseudo-Anosov is
generated by the trace of that pseudo-Anosov. That is, the trace field is given by
Qp�pfq ` �pfq

´1
q.

Thus, this trace field is totally real precisely when the trace of the pseudo-Anosov
has only real Galois conjugates.

2.5. Lehmer’s Conjecture. Theorem 1.3 is dependent on the validity of what is
known as Lehmer’s conjecture [Leh33] though Lehmer did not actually conjecture
the statement we will use. See [Smy08]. To state this conjecture, we need the
following.

Definition 2.11. Let ppxq P Crxs with factorization over C

ppxq “ a0

mπ

i“1

px ´ �iq.

The Mahler measure of p is

Mppq “ |a0|

mπ

i“1

pmax 1, |�i|q.

With this definition, we state the conjecture we assume.

Conjecture 2.12 (Lehmer). There is a constant µ ° 1 such that for every ppxq P

Zrxs with a root not equal to a root of unity Mppq • µ.

3. Examples

Here we provide examples of fibered faces of fibered 3-manifolds and examine
arithmetic features of the Veech groups of the corresponding pseudo-Anosov home-
omorphisms.

3.1. Example 1. Let � “ �1�
´1
2 be an element of the braid group B3 on three

strands (viewed as the mapping class group of a four-punctured sphere, S), where
�1 and �2 denote the standard generators. Let M denote the mapping torus of
�. McMullen computes the Teichmüller polynomial for this manifold in detail in
[McM00]. See also Hironaka [Hir10].

Since � permutes the strands of the braid cyclically, b1pMq “ 2. Choosing
appropriate bases, we obtain an isomorphism H

1
pM ;Zq – Z2 so that the starting

fiber surface S is dual to p0, 1q, the fibered cone is

C “ tpa, bq P R2 : b ° 0,´b † a † bu

and the Teichmüller polynomial for this cone is

⇥Cpx, uq “ u
2

´ upx ` 1 ` x
´1

q ´ 1.

Specialization to an integral class pa, bq P CZ equates to setting x “ t
a and u “ t

b

and yields

⇥pa,bq
C ptq “ ⇥Cpt

a
, t

b
q “ t

2b
´ t

b`a
´ t

b
´ t

b´a
` 1.

We used the mathematics software system SageMath [S`21] to factor ⇥pa,bq
C ptq

for all primitive integral pairs pa, bq P C with b † 50, to determine the stretch factors
�pa,bq of the corresponding monodromies and their minimal polynomials. We then
computed the conjugates of the corresponding traces, �pa,bq `1{�pa,bq, to determine
whether the trace field of each associated Veech group is totally real. The results
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are shown in Figure 1. Recall that by Theorem 2.9, when this trace field is not
totally real, the Veech group has no parabolic elements.

These computations suggest that there are only finitely many pairs pa, bq where
the trace field is not totally real. This is not a coincidence as we will see below.
For this, we record the following improvement on Corollary 2.5 for the cone C for
this example.

Lemma 3.1. For any sequence ↵n “ pan, bnq P CZ of distinct elements, we have
�pf↵nq Ñ 1.

Proof. Since h is convex, the maximum value of hpa, bq “ logp�pfpa,bqqq, for points
pa, bq P CZ and a fixed b, occurs at either pb ´ 1, bq or p1 ´ b, bq.

First we consider the points of the form pb ´ 1, bq. The specialization of ⇥C in
this case takes the form

⇥pb´1,bq
C ptq “ t

2b
´ t

2b´1
´ t

b
´ t ` 1.

Recall that �b “ �pfpb´1,bqq ° 1. As b Ñ 8, we claim that �b Ñ 1. Suppose instead
that the sequence is bounded below by 1` ✏, for ✏ ° 0 on some subsequence. Then
in this subsequence we have

⇥pb´1,bq
C p�bq “ �

2b
b

p1 ´ �
´1
b

´ �
´b

b
´ �

1´2b
b

q ` 1

• p1 ` ✏q
2b

`
1 ´ p1 ` ✏q

´1
´ p1 ` ✏q

´b
´ p1 ` ✏q

1´2b
˘

The first factor on the right hand side tends to infinity when b does, while the second

factor tends toward 1 ´ p1 ` ✏q
´1

“ ✏{p1 ` ✏q ° 0. This implies that ⇥pb´1,bq
C p�bq

approaches infinity, whereas instead it is identically equal to 0. This contradiction
proves the claim.

For points of the form p1 ´ b, bq, the specialization takes the form

⇥p1´b,bq
C ptq “ t

2b
´ t ´ t

b
´ t

2b´1
` 1 “ ⇥pb´1,bq

C ptq.

Therefore, �pfp1´b,bqq “ �pfpb´1,bqq “ �b and as b Ñ 8, these both tend to 1. ⇤

One of the di�culties in the proof of Theorem 1.3 is understanding the degrees
of the trace field. This is complicated by the fact that the Teichmüller polynomial
need not be irreducible in general. For example, when specialized to pa, bq “ p9, 14q,
the Teichmüller polynomial in this example splits into the cyclotomic polynomials
t
2

´ t` 1 and t
4

´ t
2

` 1, plus the minimal polynomial of the corresponding stretch
factor. However, in other cases, such as the specialization to pa, bq “ p5, 14q, the
Teichmüller polynomial remains irreducible. We refer the reader to [FG22] for
more on the factorizations of the specialized polynomials in the example above.
As we will see in the example below, the Teichmüller polynomial also sometimes
admits additional non-cyclotomic factors aside from the minimal polynomial of the
corresponding stretch factor.

3.2. Example 2. Let �1
“ �

2, for � from the preceding example. Let M 1 denote
the mapping torus on �1 and ✓1

C1 the Teichmüller polynomial of the fibered cone C1

containing the dual of �1. Here we will observe three di↵erent splitting behaviors
of specializations of the Teichmüller polynomial. In particular, we see that certain
specializations of ✓1

C1 split into multiple non-cyclotomic factors, limiting what in-
formation can be derived about conjugates of the corresponding stretch factors and
their traces by looking at the collection of all roots of ✓1

C1 .
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Figure 1. Primitive integral elements in a fibered cone for the
mapping torus of the three-strand braid �1�

´1
2 . Elements marked

with green triangles have corresponding Veech group with trace
field that is not totally real.

The Teichmüller polynomial here is

✓
1
C1 px, uq “ u

2
´ upx

2
` 2x ` 1 ` 2x´1

` x
´2

q ` 1

over the cone

C “ tpa, bq P R2 : b ° 0,´b{2 † a † b{2u.

The specialization to pa, bq “ p6, 17q is irreducible over Z:

t
34

´ t
29

´ 2t23 ´ t
17

´ 2t11 ´ t
5

` 1,

while the specialization to pa, bq “ p7, 17q splits as a cyclotomic and non-cyclotomic
factor:

pt
4

` t
3

` t
2

` t`1qpt
30

´ t
29

´ t
27

` t
26

` t
25

´ t
24

´ t
22

` t
21

´ t
20

` t
19

´ t
17

` t
16

´ t
15

` t
14

´ t
13

` t
11

´ t
10

` t
9

´ t
8

´ t
6

` t
5

` t
4

´ t
3

´ t ` 1q,

and the specialization to pa, bq “ p7, 18q has multiple non-cyclotomic factors:

pt
2
´t`1qpt

4
`t

3
`t

2
`t`1qpt

12
´t

9
´t

8
`t

7
`t

6
`t

5
´t

4
´t

3
`1qpt

18
´t

16
´t

9
´t

2
`1q.

Figure 2 shows whether the Veech groups corresponding to elements of C1 have
totally real trace field. For all three specializations described in this example, the
corresponding Veech group trace field is not totally real.

The analog to Lemma 3.1 holds in this example as well. M 1 is a 2-fold cover of
M so the stretch factors in C1

Z are at most squares of the stretch factors in CZ.
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Figure 2. Primitive integral elements in a fibered cone for the
mapping torus of the three-strand braid p�1�

´1
2 q

2. Elements
marked with green triangles have a not totally real correspond-
ing Veech group.

4. Most Veech groups have no parabolics

We are now ready for the proof of the first theorem from the introduction.

Theorem 1.3. Suppose F is the fibered face of a fibered hyperbolic 3–manifold.
Assuming Lehmer’s Conjecture, the set of ↵̄ P FQ such that A↵`pX↵, q↵q contains
a parabolic element is discrete in F .

Proof. Consider any sequence of distinct elements ↵n in CZ such that ↵̄n does not
accumulate on BF . We need to show that A↵pX↵, q↵nq contains a parabolic for at
most finitely many n. According to Theorem 2.9, it su�ces to prove that the trace
field is totally real for at most finitely many n. Setting �n “ �pf↵nq, Theorem 2.10
implies that the trace field of A↵pX↵n , q↵nq is Qp�n ` �

´1
n

q.
Next, let N be the number of terms of the Teichmüller polynomial, ⇥C for C.

The stretch factor �n is the largest modulus root of the specialization ⇥↵n
C ptq by

Theorem 2.3. We observe that this polynomial has no more nonzero terms than ⇥C ,
and thus has at most N terms. Descartes’s rule of signs implies that the number
of real roots of ⇥↵n

C is at most 2N ´ 2.
Suppose that pnptq is the minimal polynomial of �n, which is thus a factor of

⇥↵n
C ptq (up to powers of t, which we will ignore). In particular, note that �n bounds

the modulus of all other roots of pnptq. The stretch factors are always algebraic
integers, and hence pnptq is monic. The Mahler measure is therefore the product
of the moduli of the roots outside the unit circle. There are at most 2N ´ 2 real
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roots of ⇥↵n
C ptq, and hence the same is true of pnptq. Write

Mppnq “ AnBn

where An is the product of the moduli of the real roots and Bn is the product of
the moduli of the non-real roots outside the unit circle (and 1 if there are none).
Thus, we have

(1) An § �
2N´2
n

.

Now, as n Ñ 8, we have |�pS↵nq| “ }↵n}T Ñ 8 as n Ñ 8. Since ↵̄n does not
accumulate on BF , Corollary 2.5 implies �n “ �pf↵nq Ñ 1. By (1), it follows that
An Ñ 1 as n Ñ 8. Since we are assuming Lehmer’s Conjecture, it follows that
Bn ° 1 for all but finitely many n. That is, there is at least one non-real root ⇣n
of pnptq outside the unit circle. (In fact, the number of such roots tends to infinity
linearly with |�pS↵nq| since �n has the maximum modulus of any root of pnptq).

Therefore, for all but finitely many n, the embedding of Qp�n ` �
´1
n

q to C
sending �n ` �

´1
n

to ⇣n ` ⇣
´1
n

has non-real image, since ⇣n is non-real and lies o↵
the unit circle. Therefore, Qp�n ` �

´1
n

q is totally real for at most finitely many n,
as required. ⇤
Remark 4.1. The proof of Theorem 1.3 follows a strategy of Craig Hodgson, [Hod],
for understanding trace fields under hyperbolic Dehn filling.

The key ingredient is that for sequences t↵nu in CZ we �pf↵nq Ñ 1.

Theorem 4.2. Suppose F is the fibered face of a fibered hyperbolic 3–manifold and
that 1 is the only accumulation point of the set

t�pf↵q | ↵̄ P FQu.

Assuming Lehmer’s Conjecture, the set of ↵̄ P FQ such A↵`pX↵, q↵q contains a
parabolic element is finite.

Proof. This is exactly the same as the proof of Theorem 1.3, except that the as-
sumption that 1 is the only accumulation point of t�pf↵q | ↵̄ P FQu replaces the
references to Corollary 2.5, and does away with the requirement that ↵̄n does not
accumulate on BF . ⇤

Returning to the examples from Section 3, Lemmas 3.1 and the discussion in
both implies that the hypotheses of Theorem 4.2 are satisfied. Thus only finitely
many elements ↵ P CZ are such that A↵`pX↵, q↵q can contain parabolics. We refer
the reader to [LMT21] for more on accumulation set of t�pf↵q | ↵ P CZu

5. Veech groups of leaves

We now turn our attention to the non-integral points in the cone and the second
theorem from the introduction.

Theorem 1.4. If F is a fibered face of a closed, fibered, hyperbolic 3–manifold, then
for all ↵ P F ´ FQ, and any leaf S↵ of F↵, the abelian group H

A↵
↵

† A↵`pX↵, q↵q

has finite index.

For the rest of the paper, we assume M is a closed, fibered, hyperbolic 3–
manifold. The results of this section are only nontrivial if b1pMq ° 1, since other-
wise F ´ FQ “ H for any fibered face F (since in that case F “ FQ is a point).
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Given ↵ P F , we recall that  ↵

s
is the reparameterized flow as in §2.2, that sends

leaves of F↵ to leaves. Furthermore, pX↵, q↵q is the leaf-wise conformal structure

and quadratic di↵erential, and there is K↵ ° 1 so that  ↵

s
is the K

|s|
↵ –Teichmüller

map, hence K
2|s|
↵ –quasi-conformal and K

|s|
↵ –bi-Lipschitz.

Lemma 5.1. For any ↵ P F ´ FQ there exists a compact subsurface Z Ä S↵ such
that

M “

§

sPr0,1s
 
↵

s
pZq.

Proof. Choose an exhaustion of S↵ by a sequence of compact subsurfaces:

Z1 à Z2 à Z3 à ¨ ¨ ¨S↵, and
8§

n“1

Zn “ S↵,

and observe that $
&

%
§

sPp0,1q
 
↵

s
pintpZnqq

,
.

-

8

n“1

is an open cover of M since every leaf is dense. Since M is compact, the open cover
admits a finite subcover of M . As the compact surfaces Zn are nested, there exists
an index N such that for Z “ ZN we have

M “

§

sPr0,1s
 
↵

s
pZq. ⇤

The isomorphism H↵ – H
A↵
↵

is given by s fiÑ  
↵

s
|S↵ . We write

H
A↵
↵

r0, 1s Ä H
A↵
↵

for the image of H↵ X r0, 1s under this isomorphism. Note that every element of
H

A↵
↵

is K2
↵
–quasi-conformal and K↵–bi-Lipschitz since s § 1. As a consequence of

Lemma 5.1, we have the following.

Corollary 5.2. For ↵ P F ´ FQ and Z Ä S↵ as in Lemma 5.1 we have

S↵ “

§

hPHAff
↵ r0,1s

hpZq.

Proof. Let Z Ä S↵ be the compact subsurface from Lemma 5.1, so that for every
x P S↵ Ñ M , we have x P  

↵

s
pZq for some s P r0, 1s. Since x P S↵, this implies that

s P H↵. Therefore

S↵ “

§

sPH↵Xr0,1s
 
↵

s
pZq “

§

hPHAff
↵ r0,1s

hpZq. ⇤

Corollary 5.3. For any ↵ P F ´ FQ there exists C ° 0 so that for any leaf S↵

of F↵, the geometry of q↵ is bounded. Specifically, (1) there is a lower bound on
the length of any saddle connection, in particular a lower bound on the distance
between any two cone points, (2) all cone points have finite (uniformly bounded)
cone angle, and (3) pX↵, q↵q is complete.

Proof. Let S↵ be any leaf, and consider the compact surface Z from Corollary 5.2.
By making Z slightly larger, we can assume that no singular points of q↵ lie on the
boundary of Z. Denote the set of all singularities of q↵ by A. Let dBZpaq denote
the distance of a singularity a P A to the boundary of Z, and let dZpa, bq denote the
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minimal length of a saddle connection in Z between two (not necessarily distinct)
singularities a, b P A X Z. Since Z is compact, we have that

✏ “ min

"
min

a,bPAXZ

dZpa, bq,min
aPA

dBZpaq

*
° 0.

Pick a saddle connection ! connecting any singularity a to any singularity b. There
exists an h P H

A↵
↵

r0, 1s such that hpZq contains a. Since h is K↵–bi-Lipschitz,
either ! is contained in hpZq and has length at least ✏K´1

↵
, or it leaves hpZq and

we again deduce that ! has length at least the distance from a to BhpZq, which is
at least ✏K´1

↵
. In either case, we obtain a uniform lower bound ✏K´1

↵
to the length

of !, proving (1).
As was noted in Section 2.3, we have that all cone points have finite cone angle

which proves (2). Since Z is compact, there is an ✏
1 so that the ✏1–neighborhood

of Z also has compact closure, which is thus complete. Any Cauchy sequence has
a tail that is contained in the h-image of the closure of this neighborhood for some
h P H

A↵
↵

r0, 1s. Since this h–image is also complete, the Cauchy sequence converges,
and we have that pX↵, q↵q is complete which proves (3). ⇤

Remark 5.4. Note that Corollary 5.3 implies that our surfaces are tame in the
sense of Definition 2.1 of [PSV11].

An important observation is the following: for any element of g P A↵`pX↵, q↵q,
we can choose some element h P H

A↵
↵

r0, 1s so that h ˝ gpZq X Z ‰ H, and further-
more, if g is K–quasi-conformal, then h ˝ g is pKK

2
↵

q–quasi-conformal.

Proposition 5.5. Suppose ↵ P F ´ FQ, K0 ° 1, and tgnu
8
n“1 Ä A↵`pX↵, q↵q is a

sequence of elements with Kpgnq § K0. Then there is a subsequence tgnku
8
k“0 and

thnku
8
k“0 Ä H

A↵
↵

r0, 1s so that hnk ˝ gnk “ hn0 ˝ gn0 for all k • 0.

Proof. From the observation before the statement, we can find hn P H
A↵
↵

r0, 1s so
that hn ˝ gnpZq X Z ‰ H. Next, observe that hn ˝ gn is pK0K

2
↵

q–quasi-conformal,
so by compactness of quasi-conformal maps, after passing to a subsequence, hnk ˝

gnk converges uniformly on compact sets to a map f . The maps hnk ˝ gnk are
a�ne, so they must map cone points to cone points. Since the cone points are
uniformly separated by Corollary 5.3, there are a pair of cone points a, b so that for
k su�ciently large hnk ˝gnkpaq “ b. Moreover, if we pick a pair of saddle connections
in linearly independent directions emanating from a, then for n su�ciently large
hnk ˝gnk all agree on this pair, again by Corollary 5.3. But these conditions uniquely
determines the a�ne homeomorphism, and hence hnk ˝ gnk is eventually constant,
and passing to a tail-subsequence of this subsequence completes the proof. ⇤

From this we can prove a special case of Theorem 1.4:

Proposition 5.6. If ↵ P F ´ FQ, then H
A↵
↵

has finite index in SA↵pX↵, q↵q.

Proof. Suppose H
A↵
↵

is not finite index, consider the closure of the D↵–image in
PSL2pRq:

G “ D↵pSA↵pX↵, q↵qq.

Since ↵ P F ´FQ, every leaf S↵ of F↵ is dense in M . Therefore H
D

↵
† � – R is an

abelian subgroup with rank at least 2, and hence is dense. Consequently, � † G.
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By the classification of Lie subalgebras of sl2pRq (or a direct calculations) we
observe that, after replacing G with a finite index subgroup, we must be in one of
the following situations:

(1) G “ PSL2pRq,
(2) G is the subgroup of upper triangular matrices, or
(3) G “ �.

In any case, we claim that there is a sequence of elements tgnu Ä SA↵pX↵, q↵q

such that D↵pgnq Ñ I in PSL2pRq and so that HA↵
↵

gn are distinct cosets of HA↵
↵

.
Assuming the claim, we prove the proposition. For this, we simply apply Proposi-
tion 5.5, pass to a subsequence (of the same name) so that hn ˝ gn “ h0 ˝ g0 for all
n • 0. This contradicts the fact that tH

A↵
↵

gnu are all distinct cosets.
To prove the claim, notice that in the first two cases, a finite index subgroup

of D↵pSA↵pX↵, q↵qq is dense in the Lie subgroup G § PSL2pRq, and � † G is a
1–dimensional submanifold of G, which itself has dimenion 3 or 2 in cases (1) and
(2), respectively. This implies that there exists a sequence tgnu P SA↵pX↵, q↵q such
that D↵pgnq Ñ I as n Ñ 8 but D↵pgnq R �. By way of contradiction, suppose that
there exists a subsequence tgniu such that gni are in the same coset H

A↵
↵

g where
D↵pgq R �. This implies that D↵pgniq Ä �D↵pgq, which is a 1–manifold parallel
to � and does not accumulate to I. This contradicts the fact that D↵pgniq Ñ I.
Therefore, there exists a subsequence of tgnu such that tH

A↵
↵

gnu are all distinct
cosets.

To prove the final case of the claim, we argue two distinct subcases. First, if
H

D

↵
has infinite index in D↵pSA↵pX↵, q↵qq, then by definition there exists infinitely

many distinct cosets bD
n
H

D

↵
of HD

↵
in D↵pSA↵pX↵, q↵qq. Since H

D

↵
is dense in �,

there are elements a
D

n
P H

D

↵
such that b

D

n
a
D

n
Ñ I as n Ñ 8. Choose a sequence

gn P SA↵pX↵, q↵q such that D↵pgnq “ b
D

n
a
D

n
. Then D↵pgnq Ñ I in PSL2pRq and

H
A↵
↵

gn are distinct cosets of HA↵
↵

.
Secondly, suppose HD

↵
has finite index in D↵pSA↵pX↵, q↵qq. Since we are assum-

ing that HA↵
↵

is infinite index in SA↵pX↵, q↵q, then we have infinitely many distinct
cosets b

A↵
n

H
A↵
↵

of HA↵
↵

in SA↵pX↵, q↵q. Since H
D

↵
is dense in �, we can find a

sequence ta
A↵
n

u P H
A↵
↵

such that Dpb
A↵
n

qDpa
A↵
n

q Ñ I as n Ñ 8. Let gn “ a
A↵
n

b
A↵
n

.
Then D↵pgnq Ñ I in PSL2pRq and H

A↵
↵

gn are distinct cosets of HA↵
↵

. This com-
pletes the proof of the claim. Since we already proved the proposition assuming
the claim, we are done. ⇤

To complete the proof of Theorem 1.4, we need only prove the following.

Proposition 5.7. A↵`pX↵, q↵q “ SA↵pX↵, q↵q.

Proof. First, observe that SA↵`pX↵, q↵q is a normal subgroup of A↵`pX↵, q↵q

since it is precisely the kernel of the homomorphism given by the determinant of the
derivative. In fact, from this homomorphism, either A↵`pX↵, q↵q “ SA↵pX↵, q↵q

or else the index is infinite; rA↵`pX↵, q↵q : SA↵pX↵, q↵qs “ 8.
After passing to a finite index subgroup, � † A↵`pX↵, q↵q, if necessary, the con-

jugation action of � on SA↵`pX↵, q↵q preserves the finite index subgroupH
A↵
↵

(and
without loss of generality, HA↵

↵
† �). It thus su�ces to prove � † SA↵`pX↵, q↵q,

or equivalently, D↵p�q † PSL2pRq.
Consider any element

g “

ˆ
a b

c d

˙
P D↵p�q and h “

ˆ
� 0
0 �

´1

˙
P H

D

↵
,
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with � ‰ ˘1. Then ghg
´1

P H
D

↵
, and is given by

ghg
´1

“
1

detpgq

ˆ
a b

c d

˙ ˆ
� 0
0 �

´1

˙ ˆ
d ´b

´c a

˙

“
1

detpgq

ˆ
ad�´ bc�

´1
abp�´ �

´1
q

cdp�´ �
´1

q ad�
´1

´ bc�

˙
.

In order for this element to be in H
D

↵
(hence diagonal), we must have that ab “ 0

and cd “ 0. Suppose that a “ 0. If c “ 0, then we have the zero matrix, so we
must have that c ‰ 0 and instead that d “ 0. This gives us that g is a matrix of
the form

g “

ˆ
0 b

c 0

˙
.

We note that the square of a matrix of this form is a diagonal matrix. Similarly, if
b “ 0, we must have that c “ 0 and we have that g is a matrix of the form

g “

ˆ
a 0
0 d

˙
.

Together, these two conclusions imply that either g or g2 is diagonal.
Now we show that D↵p�q † PSL2pRq. If not, then there exists g P D↵p�q with

0 † detpgq ‰ 1. After squaring and inverting if necessary, we may assume that g is
diagonal,

g “

ˆ
� 0
0 �

˙
,

and 0 † detpgq “ �� † 1. Without loss of generality, suppose � † 1. Notice that
there exists an element h P H

D

↵
such that

h “

ˆ
µ 0
0 µ

´1

˙

and there exist n, k P Z so that

m “ g
n
h
k

“

ˆ
r 0
0 s

˙

where 0 † r, s † 1. Therefore, mj is a contraction for all j ° 0, which implies that
it is contracting in both directions. Fixing a saddle connection ! of q↵, it follows
that the length of mj

p!q tends to 0 as j Ñ 8. This contradicts Corollary 5.3, part
(1), and thus proves that g P PSL2pRq, as required. ⇤
Remark 5.8. The final contradiction in the proof also follows from Theorem 1.1
of [PSV11], since D↵pA↵`pX↵, q↵qq is necessarily of type (i) in that theorem.
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