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An expanding train-track map on a graph of rank n is P-small if its dilatation is 
bounded above by n

√
P. We prove that for every P there is a finite list of mapping 

tori X1, . . . , XA, with A depending only on P and not n, so that the mapping torus 
associated with every P-small expanding train-track map can be obtained by surgery 
on some Xi. We also show that, given an integer P > 0, there is a bound M depending 
only on P and not n, so that the fundamental group of the mapping torus of any 
P-small expanding train-track map has a presentation with less than M generators 
and M relations. We also provide some bounds for the smallest possible dilatation.

© 2014 Published by Elsevier B.V.

1. Introduction

Let G be a simplicial graph. A map f : G → G is a train-track map if vertices are mapped to vertices 
and, for every edge e and positive integer i, the i-th iterate f i(e) is an immersed edge path. The notion 
of a train-track map was first introduced by Bestvina and Handel [4] as a normal form for certain outer 
automorphisms of a free group. This is analogous to the train-track representation of a mapping class as 
developed by Thurston.

To a graph self-map, one can associate a transition matrix Tf (with size equal to the number of edges). 
We say f is an expanding train-track (ett) map if its transition matrix Tf is expanding (see Definition 2.3). 
Define the dilatation of f , λf , to be the largest modulus of an eigenvalue of Tf and define the rank of G, 
rank(G), to be the rank of fundamental group of G. Note that, rank(G) is not equal to the size of the 
matrix Tf .

Guided by analogies with mapping class group, we are interested in studying expanding train-track maps 
with small dilatation. As in the mapping class group setting, one expects the minimum possible dilation to 
converge to 1 as the rank of G goes to infinity. For a pseudo-Anosov mapping class φ: S → S, define

λpA(n) = min
{
λφ

∣∣ φ is a pseudo-Anosov map on a closed surface S with
∣∣χ(S)

∣∣ = n
}
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[9,1,6] gave estimates for λpA(n)

log 2
6 ≤ lim inf

n

(
n log λpA(n)

)
≤ 2 log

(
3 +

√
5

2

)
.

We similarly define

λ(n) = min
{
λf

∣∣ f : G → G is an ett and rank(G) = n
}
,

and, in Sections 6 and 7, we show that

log 3
3n− 3 ≤ log λ(n) < log 2

n
. (1)

The right-hand inequality is strict for every n (see examples in Section 6), however, we believe that it is 
asymptotically strict.

Conjecture 1.1. For every n,

lim
n→∞

n log λ(n) = log 2.

In general, one would like to understand the structure of all ett maps with small dilatation. For P > 1, 
we say an ett map f : G → G is P-small if

λf ≤ n
√

P, where n = rank(G).

Similarly, a pseudo-Anosov map φ: S → S on a closed surface S is P-small if

λφ ≤ n
√

P, where n =
∣∣χ(S)

∣∣.
We now consider the family of P-small maps as P is fixed and n goes to infinity. Our main theorem is an 
analogue of the following theorem of Farb–Leininger–Margalit.

Recall that a mapping torus associated with a map f : X → X is the space

Mf = X × [0, 1]/ ∼ with (x, 0) ∼
(
f(x), 1

)
.

By Van Kampen’s theorem, this topological construction corresponds to an HNN extension of the funda-
mental group.

Theorem 1.2. ([5,2]) For each P > 1 there exist finitely many complete, non-compact, hyperbolic 3-manifolds 
M1, . . . , Mr that fiber over S1, with the property that for any P-small pseudo-Anosov homeomorphism φ of 
any surface S, there exists a Dehn filling M ′

i of Mi for some i, and a fiberation of Ψ : M ′
i → S

1 such that 
φ is the monodromy of Ψ .

We define a notion surgery for mapping tori of graphs and prove the following:

Theorem A. For every P > 1, there is a finite set of 2-complexes, which are mapping tori of self maps of 
graphs, X1, . . . , XA, so that: If f : G → G is a P-small expanding train-track map on a graph G, then Mf

is homeomorphic to a 2-complex that is obtained by surgery on some Xi.
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In particular, surgery does not alter the number of essential 2-cells in the mapping torus and only changes 
the structure of the edges. As a result we are able to prove a universal boundedness result on presentations 
of the fundamental groups of mapping tori associated with ett maps.

Theorem B. There is a number M depending only on P (and not on n) so that if φ ∈ Out(Fn) is a P-small 
ett automorphism then Γφ has a presentation with at most M generators and M relations.

The paper is organized as follows. Section 2 provides background and sets notation for train-track maps 
of Out(Fn) elements, 2-complexes, and mapping tori. In Section 3 we describe how given a mapping torus 
we may replace its vertical graph with another to obtain a new mapping torus. Section 4 is dedicated to 
the proof of Theorem A. Section 5 is where Theorem B is proved. In Section 6 we prove the upper bound 
for Eq. (1) and in Section 7 we prove the lower bound.

2. Background

We review in Section 2.1 properties of graph maps and the outer automorphisms which they represent. 
We recall Definition 2.10 of a graph Δf called the derivative of f which will be useful for several purposes 
including the definition of surgery of mapping tori.

In Section 2.2 we set the notation for 2-complexes, and define the operations of subdivision and its inverse. 
We then define the notion of removing a sub-1-complex from the 1-skeleton of a 2-complex (Section 2.3).

Section 2.4 is devoted to describing a 2-complex structure of a mapping torus. We give a set of necessary 
and sufficient conditions for a 2-complex to be isomorphic to a mapping torus of a graph map.

2.1. Train-track maps and dilatation

Once and for all, fix a basis of the free group {x1, . . . , xn}. Let R be a graph with one vertex ∗, and n
edges attached to it at both ends forming n loops. Identify the edges of R with the free basis.

Definition 2.1. A marked graph is a finite 1-complex G together with a homotopy class [τ ] of homotopy 
equivalences τ : R → G.

Let Φ be an automorphism of the free group Fn. The automorphism Φ induces a map fΦ: R → R in the 
obvious way.

Definition 2.2. The map f : G → G is a topological representative of φ ∈ Out(Fn) if: the f -image of any edge 
is a vertex or an immersed path beginning and ending at vertices, and for any homotopy inverse η: G → R

of τ , the map μ ◦ f ◦ τ is freely homotopic to fΦ for Φ ∈ φ.

We are interested in Mf the mapping torus of f and its fundamental group. By the Van Kampen theorem, 
the fundamental group of the mapping torus Mf is an HNN extension of Fn, which can be presented as

Γf = Fn∗φ =
〈
x1, . . . , xn, t

∣∣ txit
−1 = Φ(xi)

〉
Observe that the universal cover M̃f is contractible, since it is a graph of contractible spaces.

Let m be the number of edges in G. The transition matrix associated with f is an m ×m matrix M = (aij)
so that1

1 Sometimes the transition matrix is defined as the transpose of this matrix.
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aij is the number of times f(ei) crosses ej in either direction.

Observe that M is a non-negative matrix. For k ≥ 1, let akij be the (i, j) entry in Mk.

Definition 2.3. We say M is expanding if for all 1 ≤ i, j ≤ m

lim sup
k

akij = ∞.

Let λ be the largest-modulus of an eigenvalue of M . Perron–Frobenius theory states that λ is real and ≥ 1. 
Recall further that if λ = 1 then M is a permutation matrix and f is a homeomorphism. The number λ is 
called the Perron–Frobenius eigenvalue of f .

The following definition is due to Bestvina–Handel [4].

Definition 2.4. A topological representative f of φ is a train-track map if fk(e) is immersed for all edges 
e ∈ G and all powers k > 0. The map f is an expanding train-track map (ett) if it is a train-track map, and 
its transition matrix is expanding.

We give an equivalent description of a train-track map. Endow the graph G with an orientation once and 
for all. For a directed edge e, we denote its initial vertex by i(e) and its terminal vertex by ter(e).

Definition 2.5. A pair of directed edges {e, e′} is called a turn if i(e) = i(e′).

Definition 2.6. Let Df(e) denote the first edge in the path f(e). A turn {e, e′} is pre-degenerate (PD) if 
Df(e) = Df(e′).

It follows from the work of Nielsen [8] and Stallings [10] that if f is not a homeomorphism then it has a 
PD turn. The map Df sends a turn to a turn.

Definition 2.7. A turn {e, e′} is illegal if it is PD or if it is mapped to a PD turn under a positive iterate of 
Df , otherwise, it is legal. An edge path is legal if it crosses no illegal turns.

The proof of the following proposition is clear.

Proposition 2.8. A topological representative f : G → G is a train-track map if and only if f(e) is legal for 
every edge e.

Definition 2.9. A trap is an oriented connected graph with the property that every vertex has a unique edge 
initiating from it. Topologically, a trap is a union of directed trees and a directed circle so that each tree is 
glued to the circle at a distinct vertex. The edges of the trees are directed towards the circle.

Given a graph map, its derivative graph (definition below) is an example of a union of traps.

Definition 2.10. Let f : G → G be a graph map that is a topological representative of an automorphism φ, 
and we assume that no edge is taken by f to a vertex. The derivative graph of f , Δf is constructed as 
follows: There is a vertex in Δf for each directed edge of G and an edge from e to e′ if Df(e) = e′.

Proposition 2.11. A topological representative f : G → G is a train-track map iff f i(e) does not contain a 
backtracking segment (an edge followed by its inverse) for 1 ≤ i ≤ m where m is the number of edges in G.
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Proof. We must show that if a turn does not become PD after m − 1 iterations of f then it is legal. The 
graph Δf is a union of disjoint traps. In order to check if a turn {e, e′} is illegal we start with ve, ve′ ∈ Δf

corresponding to the directed edges e, e′ in G. We form the sequences ai and bi of vertices in Δf starting 
with a1 = ve, b1 = ve′ and ai, bi are the terminal vertices of the directed edges initiating at ai−1, bi−1. The 
sequences ai and bi are getting trapped by the oriented circles (the traps) of Δf . The sequences ai and bi
reach a cycle (or two disjoint cycles) after no more than m − 1 steps. If both ai and bi are not on the same 
directed circle or if they are on a directed circle and ai �= bi then they will never coincide. �

We deduce that deciding if a map has the train-track property is a finite check.

Definition 2.12. Let −→v be the unit length positive right eigenvector of M corresponding to the Perron–
Frobenius eigenvalue λf i.e. Mv = λv. The natural metric on G induced by a train-track map f is given by 
setting the length of the edge ei to be vi the i-th coordinate of −→v .

When G is endowed with the natural metric len(f(e)) = λlen(e) for every edge e in G. The next 
proposition shows that the dilatation can be associated with the automorphism represented by f .

Proposition 2.13. ([3]) If φ ∈ Out(Fn) is an ett automorphism represented by a PF train-track map f : G →
G then for any non-periodic conjugacy class w in Fn, and for any basis X of Fn:

log λf = lim
k→∞

log |φk(w)|X
k

(2)

Where |w|X denotes the length in the basis X of the cyclically reduced word equivalent to w. In particular, 
λf is the same for all train-track representatives f of φ.

Sketch of the proof. This proof is essentially written down in [3], but we include it for completeness. Let w
be a conjugacy class of a word, it is represented in G by an immersed loop α. For a closed path γ in G we 
denote by f#(γ) the immersed loop homotopic to the loop f(γ). Consider the infinite sequence αk = fk

#(α). 
Endow G with the natural metric, and consider the length of αk. If it is bounded, then α is preperiodic 
(eventually periodic) because there are only finitely many loops whose length is smaller than any given 
length. Thus w is φ pre-periodic. Since φ is an automorphism, w preperiodic implies that it is periodic. We 
conclude that if w is not periodic, the length of αk is unbounded.

Let BCC(f) the bounded cancellation constant of f (see [3]), i.e. let f̃ : G̃ → G̃ be a lift of f to the universal 
cover of G, then for any geodesic [x, y] whose length is greater than BCC(f), its image f(x) �= f(y). There 
is a threshold

T = 4BCC(f)
λ− 1

such that if

(1) δ, β, γ are immersed segments in G,
(2) β is legal, and
(3) len(β) > T

then

len
(
fk
#(δ · β · γ)

)
≥ cλk
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The reason is that the middle segment fk
#(β) grows like λk, and the threshold T is large enough so that 

(3) guarantees that when we reduce fk
#(δ)fk

#(β)fk
#(γ) the cancelled segments do not affect the exponential 

growth. See [3] for more details.
If w is not periodic, then the length of αk grows to infinity. Since f is a train-track map, the number 

of illegal turns in αk is non-increasing. Therefore, there is some j so that f j
#(α) contains a legal segment 

of length greater than T. Thus, len(fk
#(α)) ≥ cλk for k ≥ j (we absorbed λ−j len(f j(w)) in c). The word 

length with respect to the basis X of Fn, is quasi-isometric to lengths of immersed paths in G. Thus, up to 
a multiplicative error |φk(w)|X � λk hence the limit on the right of Eq. (2) is log λf . �
2.2. Subdivision of a 2-complex and its inverse operation

We give the usual definition of a 2-complex.

Definition 2.14. A 2-complex X is a tuple (V, E , C, μ). The set V is the set of vertices, E is the set of edges, 
C is the set of 2-cells each of which is a polygonal subset of R2. The set μ is a collection of maps, called 
gluing maps. It is the union of two sets: gluing maps of edges μE = {μe | e ∈ E}, and gluing maps of cells 
μC = {μc | c ∈ C}. For every e ∈ E , μe: ∂e → V is called a gluing map of e. The 1-skeleton of X is the graph

X(1) =
⋃
e∈E

e ∪μE V

For c ∈ C, μc: ∂c → X(1) is called the gluing map of c ∈ C. We require that when μc1(e) ∩ μc2(e) �= ∅ then 
μ−1
c1 ◦μc2 is piecewise affine. These maps can be defined by specifying a directed path in X(1) for every edge 

of ∂c. The total space is

X =
⋃
c∈C

c ∪μC X(1)

We will preform subdivision of cells as follows:

Definition 2.15 (Subdivision). Let c be a 2-cell of X so that ∂c contains more than 3 vertices. One may 
subdivide c into two cells without changing the number of vertices by adding a diagonal e between two 
non-adjacent vertices v, w to the set E , and replacing c ∈ C with two cells c1, c2 formed by subdividing c
along the diagonal from v to w. We say that this complex is obtained from X by subdividing c along (v, w).

Definition 2.16. A side of a 2-cell in X is a pair s = (c, α) where α is an edge of ∂c in R2.

Definition 2.17. Let v be a vertex in X, it is inessential if val(v) = 2 and there is no edge of X that is 
adjacent to v at both ends then v is inessential.

Definition 2.18. Suppose e is an edge in X(1) so that μ−1
C (e) is the union of exactly two subintervals J1, J2

with J1 ⊆ (c1, α1) and J2 ⊆ (c2, α2) and c1 �= c2. We say that e is an inessential edge.

Definition 2.19 (Removing an edge). If X is a 2-complex and e ∈ E is an inessential edge we can glue the 
cells whose boundary contains J1, J2 and remove e from the set of edges. We will say that the new complex 
is obtained from X by removing the removable edge e.

2.3. Cutting a 2-complex along a graph

We define the operation of cutting a 2-complex X along a 1-sub-complex U . We sketch an example in 
Fig. 1.
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Fig. 1. Cutting a 2-complex along a graph. The heavier edges are the edges of U . When we cut along U we duplicate the edges 
of U so they correspond to the sides mapping to them. Note that the left side of c4 is mapped to a single edge in XU whereas 
it mapped to a multiple edge path in X. The vertices of U correspond to pre-vertices after gluing two if they are adjacent to a 
common non-U-edge. Notice that the pre-vertices corresponding to v in c2 and v in c4 are equivalent since they are adjacent in 
the cell c1.

Definition 2.20. Let X be a 2-complex and U a 1-sub-complex, U is admissible if for each side (c, α) and 
any parameterization ρ: I → α,

μc ◦ ρ(t0) ∈ U for some t0 ∈ I =⇒ μc ◦ ρ(t) ∈ U for all t ∈ U

By subdividing the sides of the polygon, e.g. turning a square to a pentagon, we can turn any 1-sub-
complex into an admissible one. We require this condition for ease of description of the complex cut along U .

Definition 2.21. A pre-vertex of a 2-complex is a pair (c, t) so that c ∈ C and t ∈ ∂c and μc(t) is a vertex. 
A pre-edge is a pair (c, σ) with σ a segment of ∂c so that μc(σ) is a single edge of X(1).

Definition 2.22. We define an equivalence relation on the pre-vertices by the following defining relations: 
The pre-vertices (c1, t), (c2, s) are equivalent (c1, t) ∼ (c2, s) if:

(1) μc1(t) = μc2(s) = v and,
(2) if v ∈ U we further require that there exist pre-edges (c1, α1), (c2, α2) and parameterizations ρi: I → αi

so that ρ1(0) = t, ρ2(0) = s and for all r ∈ I,

μc1 ◦ ρ1(r) = μc2 ◦ ρ2(r) /∈ U.

We give another description of the equivalence classes:

Proposition 2.23. There is a bijective correspondence between equivalence classes of pre-vertices and the set:

VU =
(
X(0) ∩ UC

)
∪
{
(u, e)

∣∣ u ∈ U ∩X(0), e ∈ X(1) ∩ UC , u ∈ ∂e
}
/ ∼

where UC denotes the complement of U and ∼ is generated by the relation: (u, e) ∼ (u′, e′) if u = u′ and 
there exists a cell c and an interval J ∈ ∂c so that μc(J) = ee′.

Proof. We define the correspondence

F :
{
(c, t)

∣∣ c ∈ X(2), t ∈ ∂c, μc(t) ∈ X(0)} →
{
(u, e)

∣∣ u ∈ U ∩X(0), e ∈ X(1) ∩ UC , u ∈ ∂e
}
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as follows. If μc(t) ∈ UC then F(c, t) = μc(t). Otherwise, let (c, α) be a non-U -side so that t ∈ ∂α. Define 
F(c, t) = (μc(t), μc[α]). This map is surjective and descends to a map from equivalence classes of pre-vertices 
to VU . Since generating relations map to generating relations this map is injective. �
Definition 2.24 (Cutting along a graph). Let X be a 2-complex, U a sub-1-complex, the complex XU obtained 
from X by cutting along U is the 2-complex

(
VU , EU , CU ,

{
μU

})
.

The vertex set VU is the set of equivalence classes of vertices by the relation defined in Definition 2.22. The 
edge set is defined by

EU =
(
X(1) ∩ UC

)
∪
{
(c, α)

∣∣ μc[α] ∈ X(1) ∩ U
}
.

The gluing maps μU
e , μU

c are the obvious ones. See Fig. 1 for an example.

There is a cellular quotient map χ : XU → X, that restricts to the identity on the interiors of the 2-cells, 
and on the edges in X(1). For [c, α] ∈ EU so that μc[α] ⊂ U we have χ[c, α] = μc[α]. Similarly for [c, t] ∈ VU

with μc(t) ∈ U , χ[c, t] = μc(t).

Definition 2.25. The pre-U -graph in XU is K := χ−1(U). It consists of vertices [c, t] with c ∈ C(X), t ∈ ∂X

and μc(t) ∈ U ; and edges [c, α] with c ∈ C(X), and μc(α) ⊂ U .

2.4. Mapping tori

Let G be a graph. The mapping torus of a map f : G → G is

Mf = G× [0, 1]/ ∼

where the equivalence is generated by the relations (x, 0) ∼ (f(x), 1). We describe the 2-complex structure 
on Mf .

(1) The set of vertices V equals the set of vertices of G.
(2) The set of edges E is the disjoint union of: the set of edges of G which we call horizontal edges, and 

denote it by HE; and its complement that we call the set of vertical edges and denote by VE. Each 
vertical edge has the form (v, f(v)) for v ∈ V. We orient a vertical edge from v to f(v). We orient the 
edges of G arbitrarily.

(3) There is one square c for every e ∈ HE. We describe the gluing map of c. The top edge of c is mapped 
to e, the left side l of c is mapped to the vertical edge (i(e), f(i(e))), and the right side r of c is glued 
to the vertical edge (ter(e), f(ter(e))). The bottom edge is glued to the edge path f(e).

It is straight-forward to check if a 2-complex is a mapping torus, and we give the relevant conditions in the 
next proposition.

Proposition 2.26. The 2-complex X is a mapping torus of a map f : G → G iff:

(1) The set of edges E of X may be partitioned into two sets: the set of vertical edges VE and the set of 
horizontal edges HE.
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(2) We define the graph on the vertical edges:

U =
⋃

e∈VE
e ∪μ V.

This graph may be endowed with an orientation to make it a union of traps. Equivalently, there is a 
bijection a: V → VE.

(3) There is a bijection top: C → HE.
(4) We define the horizontal graph by

G =
⋃

e∈HE
e ∪μ V.

Choose an orientation on G. For c ∈ C, the map μc is given by the path top(c)rw−1l−1 where r, l are 
positively oriented edges in U and w is an edge path in G. We denote the edge path w by bot(c).

Proof. If X satisfies items (1)–(4) we define the map f : G → G that takes each vertex v ∈ G to the terminal 
endpoint of a(v) defined in item (2), and for e an edge in G we let f(e) = bot(c) where c is the cell so 
that top(c) = e. We check that f is well defined: since erw−1l−1 is a connected path, ter(r) = ter(w) and 
ter(l) = i(w), hence f(ter(e)) = ter(f(e)) and f(i(e)) = i(f(e)). The maps given in (2), (4) are exactly 
those induced by f . �
3. Surgery of mapping tori

In this section we describe an operation where we excise the vertical graph from a mapping torus and 
glue in a new graph in such a way that yields a new mapping torus. We shall call this operation surgery.

Definition 3.1. Let f : G → G be a map, we call and edge e mixed if its image is a concatenation of more 
than one edge. We call an edge e dynamic if it is contained in the image of a mixed edge, or if there is more 
than one edge that maps onto it.

Definition 3.2. We define an equivalence relation on the vertices of G, generated by: v ∼ w if f(v) = w. 
We define an equivalence relation on the edges of G generated by e ∼ f(e) if f(e) is a single edge that is 
non-dynamic. An equivalence class of edges will be called a stack.

Each stack has the form ε = {e, f(e), f2(e), . . . , fs(e)} for s ≥ 0 where e is a dynamic edge and fs(e) is 
possibly a mixed edge. We call fs(e) the bottom edge of the stack ε. Note that e is the only dynamic edge 
in ε and f i(e) for i = 0, . . . , s − 1 are not mixed. The quotient of G under these equivalences is a graph 
denoted by Q, and the quotient map will be denoted by p: G → Q.

Definition 3.3. The archetype of f is a map fQ : Q → Q defined as follows: fQ fixes every vertex of Q, and 
fQ(ε) = p(f(e)) where e is the bottom edge of ε.

Remark 3.4. The archetype of an expanding train-track map need not be a train-track map, need not be 
expanding and might not even be a homotopy equivalence. The most that can be said is that fQ : Q → Q

is a composition of a sequence of Stallings folds, i.e. homotopy equivalences that identify a pair of adjacent 
edges, and a pinch map, i.e. a map that is a homeomorphism on the graph minus its vertices.

We define a surgery of a mapping torus. Let X be a mapping torus of the map f : G → G. Let U be the 
vertical subgraph, as in Proposition 2.26(2). Every connected component of U is an oriented graph, in fact 
a trap, whose vertices are the elements of an equivalence class described in Definition 3.2.
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We want to remove U from X, glue in a different graph S, and redivide the 2-cells so that the output is 
again a mapping torus. We first remove redundant edges of X. For each non-dynamic edge, e of G there are 
exactly two 2-cells ce, cf−1(e) that are attached to e. Therefore e is an inessential edge and we may remove e
(Definition 2.19). Additionally if removing an inessential edge creates an inessential vertex, then we remove 
the vertex as well.

By repeating this procedure for all the non-dynamic edges in a single stack ε, one obtains a single 2-cell 
Rε for every stack ε, we call it the rectangle corresponding to ε. The attaching map μRε

sends the top edge 
of Rε to the dynamic edge e in ε, the bottom edge of ε to f(e′) for e′ = fs(e) the bottom edge of ε. The 
right side of Rε is sent to the edge path from ter(e) to f(ter(e′)) and the left side of Rε is mapped from 
i(e) to f(i(e′)).

Definition 3.5. The 2-complex obtained from X by removing all the non-dynamic edges is called the the 
floor-plan of X and denoted X̊.

Proposition 3.6. Let Xf be the mapping torus of f and XfQ the mapping torus of fQ. Let U be vertical 
graph in Xf , and W the vertical graph in XfQ then

X̊f
U = X

fQ
W

Proof. Let ε = {e, . . . , e′ = fs(e)} be a stack with e the dynamic edge and e′ the bottom edge of ε. There 
is a bijective correspondence between the stack ε and its dynamic edge: D(ε) = e.

Let us consider the cell structure of XfQ : There is one 2-cell cε for each stack ε, top(cε) = ε and 
bot(cε) = [f(e′)]. In X̊f there is one 2-cell R[e] for each dynamic edge e, and top(R[e]) = e, bot(R[e]) = f(e′). 
Define the map

D:
{
2-cells of XfQ

}
→

{
2-cells of X̊f

}
(3)

by setting D(cε) = Rε. There is also a correspondence between the horizontal edges: D(ε) = e. We now 
consider XfQ

W and X̊f
U . Eq. (3) defines a correspondence between the sets of 2-cells. There is also a bijective 

correspondence between the edges coming from horizontal edges in the two complexes. Let lε denote the left 
side of the rectangle cε, let lε̄ be the right side. Let le be the right side of Rε and lē be the right side. We 
set D(lε) = le and D(lε̄) = lē. This shows that D defines a bijective correspondence between the vertical 
edges of XfQ

W and X̊f
U . Notice that:

D
(
top(cε)

)
= top

(
D(cε)

)
D
(
bot(cε)

)
= bot

(
D(cε)

)
D(lε) = le D(lε̄) = lē.

Moreover, note that the equivalence of the vertices in XfQ , X̊f (Proposition 2.23) defining the vertices of 
X

fQ
W , X̊f

U is completely determined by the top and bottom gluing maps of the cells cε, Rε. Thus, D descends 
to a map from XfQ

W → Xf
U . �

Let X̊U be X̊ cut along U , see Definition 2.24. Recall that K denotes the pre-image of U under the 
quotient map χ: X̊U → X̊, see Definition 2.25. The next lemma will help us to determine K in our running 
example. Recall the derivative graph in Definition 2.10.

Proposition 3.7. The graph K is isomorphic to the quotient of ΔfQ defined by the equivalence relation 
generated by the following condition: The vertices vε, vε′ corresponding to the edges ε, ε′, are equivalent if 
there exists an edge ε′′ so that

fQ
(
ε′′
)

= . . . ε̄ε′ . . .
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Fig. 2. Consider the graph above with the graph map f defined by ei �→ ei+1 for i = 1, . . . , 4 and e5 �→ e3ē1e4. The stacks 
corresponding to it are x = {e1, e2}, y = {e3}, z = {e4, e5}.

Fig. 3. The quotient graph Q of the map described in Fig. 2. The archetype is the map fQ: Q → Q so that x �→ x, y �→ y and 
z �→ yXz.

Fig. 4. The mapping torus of the map of Fig. 2. The heavy edges mark the vertical subgraph. The floor plan of X is obtained by 
removing all of the middle edges from the rectangles above.

Proof. By Proposition 3.6, the 2-complexes X̊f
U and XfQ

W are isomorphic, and the pre-images of the vertical 
graphs in U , W are isomorphic. So we will denote by K the pre-image of the vertical graph in XfQ

W . The 
edges of K are the left and right sides of the cells cε. We denote them by lε, rε accordingly. Define a map

P̃ : V (ΔfQ) → {pre-vertices of XfQ}

vε �→ (cε, i(ε)).

We post-compose with the quotient map of equivalence relation of Definition 2.22 to get a map

P : V (ΔfQ) → V
(
X

fQ
W

)
This map induces a map on the edges because if (vε, vε′) is an edge in ΔfQ then fQ(ε) = ε′ and thus the 

left side of cε is an edge from i(ε) to i(ε′) in XfQ
W . Furthermore, P is injective on the edges.

Since P̃ is injective, if P (vε) = P (vε′) then (cε, i(ε)) ∼ (cε′ , i(ε′)). This equivalence is generated by 
relations of the type με′′(bot(cε′′)) ⊃ εε′. The statement follows. �

For the example of Fig. 2, whose archetype is described in Fig. 3, the mapping torus is the space described 
in Fig. 4. The graph ΔfQ has six vertices: x, y, z, x̄, ȳ, z̄, see Fig. 5. Proposition 3.7 implies that in K, 
ȳ ∼ x̄ and x ∼ z since f(z) = yx̄z. We denote the edges of X̊f

U corresponding to the left side of Rε by lε
and the right side by lε̄. In the example, K has two connected components depicted in Fig. 6.

We now wish to glue X̊U to a different graph S via a map ψ: K → S.
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Fig. 5. The derivative graph ΔfQ
of fQ. The graph K is a quotient of this by x ∼ z and x̄ ∼ ȳ.

Fig. 6. The K-graph, i.e. pre-image of the vertical graph.

Definition 3.8. An oriented graph S is called admissible if it is a union of traps.

We shall denote by M(S) the set of midpoints of edges of S.

Definition 3.9. Let X be a mapping torus of f , U its vertical subgraph and let S be an admissible graph. 
A map ψ : K → S is a filling of (X, U) if:

(1) ψ takes vertices to vertices, and maps edges to edge paths,
(2) if lε, lε̄ are the vertical edges in the same rectangle Rε in XU , then

#ψ|−1
lε

(
M(S)

)
= #ψ|−1

lε̄

(
M(S)

)
We define the hight of Rε to be htψ(Rε) := #ψ|−1

lε
(M(S)). We now define the surgery operation using 

the data (X, U, ψ).

Definition 3.10. Let X be a mapping torus of a map f : G → G, and let U be the vertical graph. Let S be 
an oriented admissible graph and ψ a filling of (X, U). The complex obtained from X by ψ-filling is denoted 
X(U, S, ψ) and it is constructed from

X̊U ∪ψ S

by adding htψ(Rε) − 1 parallel edges between lε and lε̄ in Rε connecting corresponding ψ pre-images of 
V (S).

Example 3.11. We continue with the running example. We let S be the graph with two connected compo-
nents S1, S2, S1 is a 3-edge circle, S2 is a 2-edge circle. We describe a map ψ in Fig. 7.

The 2-cells of the 2-complex X(U, S, ψ) are depicted in Fig. 8. They are glued to S via the map ψ in 
Fig. 7.

The 2-complex is a mapping torus of the map in Fig. 9.
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Fig. 7. The graph S is the union of the two circles on the bottom of the figure. The filling map ψ: K → S is the map sending the 
marked points in Ki to the corresponding vertices of Si, and extends linearly on the edges between the marked points. Notice that 
for a = x, y, z the height of la is equal to that of lā. Thus ψ satisfies the conditions for a filling.

Fig. 8. The 2-complex X(U, S, ψ).

Fig. 9. This is the horizontal graph of the mapping torus of Fig. 8. The map is ex1 → ex2 → ey1 , ey1 → ez1 , and ez1 → ez2 → ez3 → ez4 →
ez5 → ez6 → ez7 → ez8 → ey1e

x
1e

1
z. The heavy edges denote the edges ex1 , ey1 and ez1 that are the new dynamic edges.
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Recall the map χ: X̊U → X̊ in Definition 2.24 and notice that it restricts to a homeomorphism on 
X̊U −K. Denote by τ : K → U the restriction of χ to K.

Proposition 3.12. For any mapping torus X,

(1) X(U, U, τ) = X

(2) If Z = X(U, S, ψ) then X = Z(S, U, τ).

Proof. To prove (1), notice that X̊ = X̊U ∪τ U . The original complex X is obtained from X̊ by subdividing 
each ce into ht(ce) = |ε| cells. Therefore, X = X(U, U, τ). To see (2), note that X̊U = Z̊S , therefore 
X = X(U, U, τ) = Z(S, U, τ). �
Proposition 3.13. If X, U , S, ψ are as above then X(U, S, ψ) is a mapping torus.

Proof. We need to check properties 1–4 in Proposition 2.26. The vertical graph of X(U, S, ψ) is S, the other 
edges are the horizontal edges. By assumption, S is a union of traps so it satisfies (2) in Proposition 2.26. To 
check (3): notice that there is a bijection from the set of cells of X to the horizontal edges. After removing 
the non-dynamic edges, there is a bijection from the set of rectangles R to the edges of X̊ not in U . This 
induces a bijection from the rectangles in XU to the edges outside K, which survives after gluing K along S. 
So there is a bijection between the 2-cells of X̊U ∪ψ S and the edges outside of S. Subdivision adds to each 
new cell and a new top edge for it. So at the end of the subdivision process, there is a bijection top: C → HE. 
Property (4) of Proposition 2.26 requires that if top(c)rw−1l−1 is the boundary map of ∂c then r, l are edges 
and w is an edge path. After adding the parallel horizontal edges each vertical side is mapped to a single 
edge of S. Moreover, the bottom paths of the cells are either a single new edge or one of the “old” bottom 
paths of the complex X. Hence w is an edge path and the proof is complete. �
Proposition 3.14. Given X a mapping torus of f : G → G and U the vertical graph, let S be a union of 
I = |VQ| disjoint 1-edge circles. Let ψ: K → S be the map sending each edge of Ki to the single edge of Si. 
Then X(U, S, ψ) is the mapping torus of fQ.

Proof. This follows from Proposition 3.6. �
4. Finiteness

We start by proving that if f is P-small then the quotient graph Q and the archetype of f are uniformly 
finite.

Definition 4.1. Let B > 0 a map is B-bounded if the image of every edge is a concatenation of at most B
edges.

Proposition 4.2. For every P there are positive integers E, B so that if f is P-small then

(1) Q has at most E edges and vertices.
(2) fQ is B-bounded.

The following proof is a slightly modified version of the proof appearing in [5]. We repeat it in order to 
note that the proofs hold when the transition matrix Tf is expanding and not Perron–Frobenius as in [7]
and [5].
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Let A be an m ×m expanding matrix. Define a graph Γ with m vertices and aij edges from vi to vj . Let 
dout(vi) as the number of edges coming out of vi, i.e. the row sum of the i-th row. Let din(v) be the number 
of edges coming into vi, i.e. the column sum of the i-th column.

We denote by akij the i, j entry of Ak. We note that akij is equal to the number of directed paths from vi
to vj of length equal to k.

Proposition 4.3. Let A be an expanding matrix with PF eigenvalue λ then,

min
i

∑
j

aij ≤ λ.

Additionally, for each integer k > 1,

min
i

∑
j

akij ≤ λk

Proof. Assume for contradiction that mini

∑
j aij = μ > λ. Let x = [x1, . . . , xm] be vector with positive 

entries and let y = [y1, . . . , ym] = xA. Then y is positive and 
∑

i yi ≥ μ 
∑

i xi. Which means, for k ≥ 1, 
|xAk|L1 > μk|x|L1 . This is a contradiction.

The second assertion follows from the fact that a power of an expanding matrix is itself expanding. �
Lemma 4.4. ([7,5]) Let A be a non-negative expanding m ×m matrix with PF eigenvalue λ then

1 +
∑
v∈Γ

(
dout(v) − 1

)
= 1 +

∑
v∈Γ

(
din(v) − 1

)
≤ λm (4)

Proof. Let E(Γ ) be the set of edges, then
∑
v∈Γ

din(v) =
∣∣E(Γ )

∣∣ =
∑
v∈Γ

dout(v)

this establishes the first equality in (4).
Let i be the index of the smallest row sum of Am. Since A is expanding, for each j there is a path from vi

to vj . Therefore, there is a directed tree in Γ rooted at vi, with edges directed away from vi, that contains 
all of the vertices of Γ . We denote this tree by T (vi). The tree T (vi) contains exactly m −1 edges. Therefore,

1 +
∑
v∈Γ

(
dout(v) − 1

)
= 1 +

∑
v∈Γ

dout(v) −m =
∣∣E(Γ )

∣∣− ∣∣E(
T (vi)

)∣∣ (5)

Consider the map

F : {paths of length m initiating at vi} → E(G) − E
(
T (vi)

)
defined by letting F (α) be the first edge in the edge path α that is not in T (vi). Note that since the length 
of α is m, and T (vi) is a tree, there must be an edge in α that is not contained in T (vi). Moreover, since A
is expanding, F is onto. This implies that

∣∣E(Γ )
∣∣− ∣∣E(

T (vi)
)∣∣ ≤ ∣∣{paths of length m initiating at vi}

∣∣ =
∑
j

amij (6)

By our choice of i and by Proposition 4.3, 
∑

j a
m
ij ≤ λm. Together with Eqs. (5) and (6) this implies the 

lemma. �
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Proof of Proposition 4.2. If f is P-small then λn
f ≤ P. Since m ≤ 3n − 3 then, λm ≤ P3. Let Tf be the 

transition matrix of f , and Γf the adjacency graph constructed above. By Lemma 4.4 we have,
∑
v∈Γf

(
dout(v) − 1

)
≤ P3 − 1.

Thus for each v, dout(v) ≤ P and letting B := P3 we have that for each edge e, |f(e)| ≤ B. A vertex v ∈ Γf

has dout(v) > 1 iff v corresponds to a mixed edge of f . Thus the number of mixed edges is ≤ P3. Thus, 
number of edges that are images of mixed edges is bounded by P6.

If e is an edge in G such that there are distinct edges e′, e′′ in G so that f(e′) = f(e′′) = e then the 
vertex corresponding to e in Γf has din(ve) > 1 so the number of such vertices is ≤ P3.

The set of dynamic edges is a union of images of mixed edges and edges with a preimage containing more 
than one edge. The number of dynamic edges is thus bounded by E := P6 +P3. There is a bijection between 
edges in Q and dynamic edges of G, thus the number of edges in G is bounded above by E. �
Proposition 4.5. For every P > 1 there is a constant A and maps g1, . . . , gA such that for every P-small map 
f its archetype is one of the maps g1, . . . , gA.

Proof. When f is P-small, fQ is B-bounded by Proposition 4.2. There are only finitely many graphs with 
less than E edges, and there are only finitely many self maps of those graphs that are B-bounded. We list 
these maps as g1, . . . , gA. Hence fQ = gi for some i. �
Theorem A. For every P > 1, there is a finite set of 2-complexes, which are mapping tori of self maps of 
graphs, X1, . . . , XA, so that: If f : G → G is a P-small expanding train-track map on a graph G, then Mf

is homeomorphic to a 2-complex that is obtained by surgery on some Xi.

Proof. Let g1, . . . , gA be the maps from Proposition 4.5 and let Xi be the mapping torus of gi for i = 1, . . . , A. 
There is some i such that fQ = gi. By Proposition 3.14 Xi can be obtained from Mf by surgery. Since this 
operation is invertible, by Proposition 3.12, Mf can be constructed from Xi by surgery. �
5. Bounded presentations

Proposition 5.1. If f : G → G is a P-small automorphism then Mf has a finite CW structure where the 
number of cells only depends on P.

Proof. Let U be the vertical graph in X := Mf , and let X̊ be the floor plan of X. Let S be the vertical 
subgraph of MfQ , then by Proposition 3.14 we have X̊U = (MfQ)S . By Proposition 4.2, the number of i-cells 
in MfQ is bounded by E for all i = 0, 1, 2. Therefore, E bounds the number of 2-cells and the number of 
horizontal edges in X̊. Even though the number of vertices of X̊ may be large, we shall argue that most of 
them are removable. Recall the map τ : K → U from Definition 2.25. A vertex of U is a natural vertex if its 
valence is �= 2 or if it is an image of a vertex of K. Thus, for an unnatural vertex u ∈ U , its valence in X̊(1)

is also 2. Therefore, all unnatural vertices are removable. The complex X ′ that we obtain after removing 
all of the unnatural vertices is the complex that satisfies the claim. It is left to argue that the number of 
natural vertices of U may be bounded by a function that only depends on P.

The set of natural vertices is the union

τ(vertices of K) ∪
{
v
∣∣ val(v) = 1

}
∪
{
v
∣∣ val(v) ≥ 3

}
The first set in this union is bounded by E. Next we show that the cardinality of the set of valence 3 vertices 
is bounded by the cardinality of the set of valence 1 vertices.
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Each component of U is a trap, a union of disjoint trees glued to a circle at one (valence 1) point of the 
tree. In a tree it is easy to verify (for example by induction on the edges) that

∣∣{v ∣∣ val(v) = 1
}∣∣− 1 ≥

∣∣{v ∣∣ val(v) ≥ 3
}∣∣

A vertex in U with valence ≥ 3 has to lie on one of the directed trees. Therefore the number of all vertices 
in U with valence ≥ 3 is smaller than the number of valence 1 vertices.

Finally, we claim

τ(vertices of K) ⊇
{
v
∣∣ val(v) = 1

}
Consider τ : K → U , if τ is not onto the vertices then there is a vertex in Mf with no horizontal edge 
adjacent to it. Thus G has an isolated vertex, but we assumed that G is connected. Therefore, τ must be 
onto. Since τ is locally injective on edges, if x is in the interior of an edge in U then val(τ(v)) ≥ 2. Thus 
every valence 1 vertex in U is an image of a valence 1 vertex in K. This finishes the proof. �
Theorem B. There is a number M depending only on P (and not on n) so that if φ ∈ Out(Fn) is a P-small 
ett automorphism then Γφ has a presentation with at most M generators and M relations.

Proof. Consider Mf with the CW structure obtained in Proposition 5.1. The complex M̃f is contractible, 
therefore, the presentation of the fundamental group may be read from the CW structure of Mf whose 
number of cells is bounded by a function of P. �
6. Examples

In this section we give examples that have a small dilatation relative to their rank. These examples verify 
the upper bound for λ(n).

Example 6.1. Consider the rose with n leaves x1, . . . , xn and the map f defined by

x1 → x2 → . . . → xn → x1x2.

This is a train-track map since it is positive. It is easy to verify that it is expanding. The dilatation of f
is computed by declaring one of the edges, x1, to have unit length and computing the other edge lengths 
by requiring that f stretches each edge by the factor λ. Thus the lengths of x2, . . . , xn are λ, . . . , λn−1

respectively and from f(xn) = x1x2 we get the equation:

λn = 1 + λ (7)

Let tn be the root of this equation. Clearly, lim
n→∞

tn = 1. By taking log in Eq. (7) we see that lim
n→∞

n log(tn) =
log(2).

Define

λ(n) = inf
{
λf

∣∣ f : G → G with rk(π1G) = n
}

The example above implies

lim
n→∞

n log
(
λ(n)

)
≤ log(2).

In Section 7 we provide a lower bound for the value of λ(n).
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Fig. 10. The rank of this graph is the number of edges subtracted by 2. Edges map homeomorphically x1 → x2 → x3 → x4 → . . . →
xn+2.

Question 6.2. What are the asymptotic of λ(n)? In other words, what is the limit lim
n→∞

n log λ(n)?

Example 6.3. We give a slightly better example than the rose example. Consider the graph in Fig. 10. The 
rank of this graph is the number of edges subtracted by 2. The edges map homeomorphically

x1 → x2 → x3 → x4 → . . . → xn → xn+1 → xn+2.

When n mod3 = 0 then xn+2 is parallel to x3 and we set f(xn+2) = X3X2. If n mod 3 = 1 then xn+2
is parallel to x1 and we set f(xn+2) = X1X3. If n mod 3 = 2 then xn+2 is parallel to x2 and we set 
f(xn+2) = X2X1. One may verify using Proposition 2.11 that f is an expanding train-track map in all of 
these cases. The equation for the dilatation of f is one of the three equations:

λn+2 = λ + λ2

λn+2 = 1 + λ2

λn+2 = 1 + λ

The roots of these are slightly smaller than of Eq. (7). However, they still satisfy lim
n→∞

n log λ(n) = log(2).

7. A lower-bound for dilatation

In this section we provide a lower-bound for λ(n). This does not match the upper-bound provided by 
examples in the previous section. However, we arrive naturally at Example 6.3 as, possibly, the ett with the 
smallest dilation (see Remark 7.4).

Let f : G → G be an expanding train-track map. Endow G with the natural metric as in Definition 2.12
so that f is λf -Lipschitz.

Convention 7.1. We denote by e the smallest edge of G and we scale G so that the length of e is 1.

Let E be the number of edges of G and V be the number vertices of G.

Claim 7.2. For every pair of edges e′, e′′ in G, there exists a k < E so that f(e′) contains e′′.

Proof. Consider the directed graph Γ corresponding to the transition matrix of f . Since f is expanding Γ
is connected. Thus there is a path from e′ to e′′ and its length is smaller than E − 1.

This provides a quick lower-bound for λf . Namely, let emix be a mixed edge. Then f(emix) contains at 
least two edges and hence has a length of at least 2. Assuming emix is contained in fk(e) we have

λk+1 =
∣∣fk+1(e)

∣∣ ≥ ∣∣f(emix)
∣∣ ≥ 2 (8)
f
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Since k + 1 ≤ E ≤ 3n − 3, we have

log λf ≥ log 2
3n− 3 .

Using the same type of argument, with more care, we can replace log(2) with log(3) in the above estimate.

Theorem 7.3. If f is an expanding train-track map with dilatation λf then

log λf ≥ log 3
3n− 3 .

Proof. We consider the following cases separately:

(1) There is more than one mixed edge, or
(2) there is one mixed edge and its image contains three edges or more, or
(3) there is exactly one mixed edge and its image contains two edges.

For each edge e′ let k(e′) be the first natural number so that f(e) contains e′ where e is the smallest edge. 
Suppose we are in case (1). Let k = max{k(e′) | e′ is a mixed edge }. Then |fk+1(e)| ≥ 3 and replacing 2 
with 3 in Eq. (8) gives us:

log λf ≥ log 3
3n− 3 .

In case (2), let e′ be a mixed edge with |f(e′)| > 3 and let k := k(e′) then as before we get |fk+1(e)| ≥ 3
and the conclusion of the theorem follows.

Suppose we are in case (3). Let e′ be the mixed edge and k := k(e′). We claim that e must be contained 
in f(e′). Indeed since f is onto, e must be contained in the image of some edge of G. If e is contained in 
the image of e′′ and e′′ �= e′ then e′′ is not mixed. Therefore, f(e′′) = e or ē and �(e) = λ�(e′′). But we 
have assumed that e is the smallest edge so this is impossible. Thus e is not in the image of any edge other 
than e′. Thus we denote e1 = e and ei+1 = f(ei) for i = 1, . . . , k. If k < E, let ek+1 be the other edge in the 
image of ek and let ei+1 = f(ei) for all i = k + 1, . . . , E. If we let es = f(eE) then s ≤ k. Indeed if s ≥ k + 1
then we would have λE−s�(es) = �(eE) and λ�(eE) = �(es). This is a contradiction so s ≤ k

We divide the vertices into equivalence classes as in Definition 3.2. We call each equivalence class a vertex 
orbit. We claim that there has to be only one vertex orbit. Otherwise, we have at least two vertex orbits A
and B. There are 3-types of edges, those connecting a vertex in A to A, A to B or B to B. The type of an 
edge is preserved unless the edge is a mixed edge. That is, there a mixed edge for each type. Since we have 
only one mixed edge, there should be only one type of edge, which is from A to B (G is connected). But 
this implies that G is a bi-partite graph and the image of the mixed edge has a length at least 3 which has 
been dealt with in case (2).

We now analyze the case where there is only one vertex orbit. We argue that the set of images of vertices 
is the entire vertex set. The only vertex that may violate this is an endpoint v of the edge e1. The vertex v
is also an endpoint of ek+1 (otherwise it would be an image of a vertex). Moreover, if v is not an image of 
a vertex, than v is not an endpoint of any edge ei for i �= 1, ek+1. If e1 or ek+1 were loops then one of the 
ends of ek would map to v. Thus, if v is not an image of a vertex then v has valence 2, but this contradicts 
our hypothesis that all vertices of G have valence ≥ 3.

Label the vertices 0, 1, . . . , (V − 1) with f(i) = i + 1 and let e be the edge [0, a]. Then for i = 1, . . . , k, 
ei has the form [i, i + a], but there may be more than one edge of type [i, i + a]. The edge ek is of the form 



Y. Algom-Kfir, K. Rafi / Topology and its Applications 180 (2015) 44–63 63
(V − 1 − a, V − 1) or (V − 1, a − 1). If the latter, then e1 or ek+1 are loops. If ek+1 is a loop than so is es
and therefore e1. Thus the graph is a rose with n petals and in this case

λf ∼ log 2
n

(9)

so the theorem holds. Therefore, we have the case that ek = [V − 1 − a, V − 1]. Since e1 = [0, a] we have 
that ek+1 = [a, V − a] or [0, V − a]. If gcd(a, V) �= 1 then in both cases we will get a disconnected graph. 
Therefore,

gcd(a,V) = 1. (10)

We again deal with two cases: k = E and k < E. If k = E, the last edge [E − 1, E + a − 1] is mapped to 
a path of length two where one edge is e = [0, a] and the other one an edge adjacent to e (either [a, 2a] or 
[−a, 0]). That is, the end points of [E − 1, E + a − 1] are mapped to either [−a, a] or [0, 2a]. Either way, we 
have

V = 3a (11)

If k < E then we have eE = [i, i − 2a] or [i, i − a] and es = [i, i + a] so we either have −2a ≡ a or −a ≡ a

which gives

3a ≡ 0 or 2a ≡ 0 (12)

Eqs. (11) and (10) implies V = 3. Eqs. (12) and (10) implies V = 3 or V = 2. In each of these cases Eq. (9)
holds and the theorem follows. �
Remark 7.4. In fact, it seems that having more than one mixed edge should increase λf even further and it 
is reasonable to conjecture that Example 6.3 is the ett with lowest dilatation number.
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