
Advances in Mathematics 404 (2022) 108442
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Sublinearly Morse boundary I: CAT(0) spaces

Yulan Qing a, Kasra Rafi b,∗

a Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
b Department of Mathematics, University of Toronto, Toronto, ON, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2019
Received in revised form 4 March 
2022
Accepted 14 April 2022
Available online xxxx
Communicated by Moon Duchin

MSC:
20F65
37D40

Keywords:
Sublinearly Morse
Poisson boundary
CAT(0)
Hyperbolicity

To every Gromov hyperbolic space X one can associate a 
space at infinity called the Gromov boundary of X. Gromov 
showed that quasi-isometries of hyperbolic metric spaces 
induce homeomorphisms on their boundaries, thus giving rise 
to a well-defined notion of the boundary of a hyperbolic group. 
Croke and Kleiner showed that the visual boundary of non-
positively curved (CAT(0)) groups is not well-defined, since 
quasi-isometric CAT(0) spaces can have non-homeomorphic 
boundaries.
We attempt to construct an analogue of the Gromov boundary 
that encodes the hyperbolic directions in a metric space. To 
this end, for any sublinear function κ, we define a subset of the 
visual boundary called the κ–Morse boundary. We show that, 
equipped with a coarse notion of visual topology, this space 
is QI-invariant and metrizable. That is to say, the κ–Morse 
boundary of a CAT(0) group is well-defined. In the case of 
Right-angled Artin groups, it is shown in the Appendix that 
the Poisson boundary of random walks is naturally identified 
with the (

√
t log t)–boundary.
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1. Introduction

To every Gromov hyperbolic space X one can associate a space at infinity ∂X called 
the Gromov boundary of X. The space ∂X consists of equivalence classes of geodesic rays, 
where two rays are equivalent if they stay within bounded distance of each other, and 
is equipped with the visual topology. This boundary is a fundamental tool for studying 
hyperbolic groups and hyperbolic spaces (for example, see [5]). As shown by Gromov 
[16], quasi-isometries between hyperbolic metric spaces induce homeomorphisms between 
their boundaries, thus giving rise to a well-defined notion of the boundary of a hyperbolic 
group.

However, this is not true under weaker assumptions. In particular, for CAT(0) spaces, 
Croke and Kleiner [12] showed that visual boundaries of CAT(0) spaces are generally 
not quasi-isometrically invariant and hence one cannot talk about the visual boundary 
of a CAT(0) group. In [24] Qing showed that even if we restrict our attention to rank-
1 geodesics, the space of all rank-1 geodesics is still not quasi-isometry invariant. In 
[8] Cashen showed that the subset of the visual boundary consisting of only the Morse 
geodesics (equipped with the usual cone topology) is not in general preserved by quasi-
isometries.

The correct analogue of the Gromov boundary should consist of all the hyperbolic 
directions in a given metric space. It turns out, many arguments in the study of Gromov 
hyperbolic spaces can still be carried out with sub-linear error terms rather than uniform 
ones. This is our guiding principle as we attempt to find correct generalizations of the 
fundamental notions in Gromov hyperbolic spaces and construct the new boundary. In 
this paper, we introduce a boundary for CAT(0) spaces that is strictly larger than the 
set of Morse geodesics and is equipped with a coarse notion of cone topology that makes 
it invariant under quasi-isometries. However, this principle is also applicable beyond the 
setting of CAT(0) spaces (see Remark 1.1 for further developments).

The points in this boundary are geodesic rays that behave like geodesics in a Gromov 
hyperbolic space with a sublinear error term. More precisely, they satisfy one of the 
following two equivalent characterizations. Given a base-point o in X, define the norm of 
a point x to be ‖x‖ = dX(o, x). Now, fixing a sublinear function κ, we say a geodesic ray 
b : [0, ∞) → X starting from o is κ–Morse if there is a Morse gauge function mb : R2

+ →
R+ such that if ζ is a (q, Q)–quasi-geodesic segment with end points on b then, for every 
point x on ζ, we have

dX(x, b) ≤ mb(q,Q) · κ(‖x‖).

Alternatively, we say b is κ–contracting if there exists a constant cb such that, for any 
metric ball B centered at x that is disjoint from b, the projection of B to b has diameter 
at most cb · κ(‖x‖) (see Fig. 1).

Recall that geodesic rays in Gromov hyperbolic spaces are κ–contracting and κ–Morse 
for κ = 1.
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Fig. 1. Along a κ–contracting geodesic ray, the diameter of the projection of a disjoint ball is allowed to 
grow at a rate comparable to κ.

Theorem A. A geodesic ray is κ–Morse if and only if it is κ–contracting.

We define the κ–Morse boundary of X, which we denote by ∂κX, to be the space 
of all such geodesic rays and we equip this space with a notion of visual topology on 
quasi-geodesics (see Section 4). In the case where X is a Gromov hyperbolic space, ∂κX
is the same as the Gromov boundary of X for every function κ.

Theorem B. If Φ: X → Y is a quasi-isometry between proper CAT(0) metric spaces X
and Y , then Φ induces a homeomorphism Φ� : ∂κX → ∂κY .

Therefore one can define the κ–Morse boundary for any group that acts geometrically 
on a CAT(0) space or generally any space that is quasi-isometric to a CAT(0) space.

Corollary C. If G acts quasi-isometrically, discretely and co-compactly on two CAT(0)
spaces X1 and X2, then for any κ, the space ∂κX1 is homeomorphic to ∂κX2. Hence, 
the κ–Morse boundary ∂κG of G is well defined.

Our choice of topology seems to be a natural one, especially since ∂κX has good 
topological properties.

Theorem D. For every proper CAT(0) space X, ∂κX is metrizable.

We also show that the κ–boundaries associated to different sublinear functions are 
topological subspaces of each other.

Theorem E. If X is a CAT(0) metric space and κ ≤ κ′ are two sublinear functions then

∂κX ⊆ ∂κ′X

where the topology of ∂κX is the subspace topology associated to the inclusion.

A motivation for this definition of the boundary is the study of random walks on 
CAT(0) groups. Given a group G and a probability measure μ on it, the Poisson bound-
ary of (G, μ) is a canonical measurable G-space which classifies all possible asymptotic 
behaviors of a random walk on G driven by μ (see the Appendix for precise definitions).
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The boundary depends on the choice of measure, and it is an important open problem 
[19, page 153] whether two finitely supported generating measures on the same group 
give rise to isomorphic boundaries. This question is the probabilistic analog of the quasi-
isometry invariance question: indeed, two generating sets for G give rise to both two 
quasi-isometric metrics on G and to two finitely supported measures.

In the case G is a right-angled Artin group, in the Appendix (by Y. Qing and G. 
Tiozzo) we prove the following:

Theorem F. The 
√
t log t–boundary of A(Γ) is a QI-invariant topological model for the 

Poisson boundary of A(Γ) associated to any random walk driven by a generating measure 
with finite support.

To our knowledge, the κ–Morse boundary defined in this paper is the first boundary 
that is both invariant under quasi-isometries and a model for the Poisson boundary. 
By comparison, the visual boundary is known to be a model of the Poisson boundary 
for CAT(0) groups but it is not QI-invariant, while the Morse boundary ([11]) is quasi-
isometrically invariant but has zero measure with respect to random walks, hence, in 
general, it is not a model for the Poisson boundary.

The function 
√
t log t arises from the fact that a generic trajectory of the random 

walk spends a logarithmic amount of time in each flat ([29], see also Theorem A.17). As 
shown in [26], the same logarithmic excursion property also holds for generic elements 
with respect to the uniform measure on balls in the Cayley graph of G. This suggests 
that the κ–Morse boundary should have full measure not only with respect to the hitting 
measure for random walks but also with respect to the Patterson-Sullivan type measure 
obtained as a weak limit of uniform measures on balls (in fact, since the first draft of 
this paper, this has been proven in [15]).

History. Our work builds on previous attempts to construct a boundary for a CAT(0)
group that is invariant under quasi-isometries. Charney and Sultan [11] defined a con-
tracting geodesic ray in X to be one such that all disjoint balls project to sets of diameter 
at most D for some D ≥ 0. They call the set of all such geodesic rays the contracting 
boundary or the Morse boundary of X. They equip this space with a direct limit topology
and show that it is invariant under quasi-isometries. But this space does not have good 
topological properties, for example, it is not first countable. Cashen-Mackay [9], following 
the work of Arzhantseva-Cashen-Gruber-Hume [1], defined a different topology on the 
Morse boundary of X. They showed that it is Hausdorff and when there is a geometric 
action by a countable group, it is also metrizable. In fact, their definition works for every 
geodesic metric space.

The approach in [1,9] uses a different notion of sublinearly contracting geodesic. In 
[1,9], the contraction is sublinear with respect to the radii of the disjoint balls. This is 
a natural extension of the notion of a Morse geodesic to the setting of general metric 
spaces. But this boundary is smaller than the one defined in this paper and, in particular, 
cannot be used as a model for the Poisson boundary.
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It is likely that, when κ = 1, ∂κX is the same topological space as the Morse boundary 
equipped with the topology defined in [9]. If so, Theorem D would imply that the Morse 
boundary of every proper CAT(0) space is metrizable.

Remark 1.1. Since the first draft of this paper, there has been many developments in 
advancing the theory of sublinearly Morse boundaries. For instance, the first named au-
thor and Zalloum [27] proved that a homeomorphism on the sublinearly Morse boundary 
comes from a quasi-isometry if and only if the map is quasi-Möbius and sequentially sta-
ble. Zalloum [30] proved that sublinearly Morse boundaries of proper CAT(0) spaces 
are visibility spaces; Furthermore, Murray, Qing and Zalloum [22] also showed that the 
κ–lower divergence of a sublinearly Morse geodesic ray is superlinear. These results 
provide further evidence of the similarity between sublinearly Morse boundaries and 
Gromov boundaries. In an upcoming paper [15] the claim of Theorem F will be ex-
tended to all finitely generated CAT(0) groups. We also show that the generic point in 
the visual boundary of a CAT(0) space with respect to any random walk measure or the 
Patterson-Sullivan measure is sublinearly Morse. This shows that the sublinearly Morse 
directions are generic with respect to many different notions of generic.

In a sequel to this paper [25], we construct sublinearly Morse boundaries for all proper 
geodesic spaces. However, there are substantial differences between the two constructions. 
In the CAT(0) setting, many of the arguments are simpler and some of the key results 
have different statements. For example, Theorem 3.10 does not hold in general. Also, 
we present further applications in [25], proving statements analogous to Theorem F for 
mapping class groups and relatively hyperbolic groups.

Outline of the paper. Section 2 contains some needed properties of CAT(0) geometry. In 
Section 3, we give several equivalent definitions for the notion of κ–contracting geodesic. 
In Section 4, we define a topology for ∂κX and establish some topological properties, 
including the metrizability. In Section 5, we define the boundary of a CAT(0) group, in 
particular we show that ∂κX is invariant under quasi-isometry. In the last section we 
examine the group A = Z � Z2 to illustrate in full detail the properties of sublinearly 
Morse boundaries for this example. In particular, we show that the log–boundary is a 
metric model for the Poisson boundary of A. The Poisson boundary of right-angled Artin 
groups in general is treated in the Appendix.
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2. Preliminaries

Quasi-isometry and quasi-isometric embeddings.

Definition 2.1 (Quasi Isometric embedding). Let (X, dX) and (Y, dY ) be metric spaces. 
For constants k ≥ 1 and K ≥ 0, we say a map Φ: X → Y is a (k, K)–quasi-isometric 
embedding if, for all x1, x2 ∈ X

1
kdX(x1, x2) − K ≤ dY

(
Φ(x1),Φ(x2)

)
≤ k dX(x1, x2) + K.

If, in addition, every point in Y lies in the K–neighborhood of the image of Φ, then 
f is called a (k, K)–quasi-isometry. When such a map exists, X and Y are said to be 
quasi-isometric.

A quasi-isometric embedding Φ−1 : Y → X is called a quasi-inverse of Φ if for every 
x ∈ X, dX(x, Φ−1Φ(x)) is uniformly bounded above. In fact, after replacing k and K
with larger constants, we assume that Φ−1 is also a (k, K)–quasi-isometric embedding,

∀x ∈ X dX
(
x,Φ−1Φ(x)

)
≤ K and ∀y ∈ Y dY

(
y,Φ Φ−1(x)

)
≤ K.

Definition 2.2 (Quasi-Geodesics). A geodesic ray in X is an isometric embedding 
b : [0, ∞) → X. We fix a base-point o ∈ X and always assume that b(0) = o, that 
is, a geodesic ray is always assumed to start from this fixed base-point. A quasi-geodesic 
ray is a continuous quasi-isometric embedding β : [0, ∞) → X again starting from o. 
The additional assumption that quasi-geodesics are continuous is not necessary, but it 
is added for convenience and to make the exposition simpler.

If β : [0, ∞) → X is a (q, Q)–quasi-isometric embedding, and Φ: X → Y is a 
(k, K)–quasi-isometry then the composition Φ ◦ β : [t1, t2] → Y is a quasi-isometric em-
bedding, but it may not be continuous. However, one can adjust the map slightly to make 
it continuous (see [7, Lemma III.1.11]). Abusing notation, we denote the new map again 
by Φ ◦β. Following [7, Lemma III.1.11], we have that Φ ◦β is a (kq, 2(kq +kQ +K))–quasi-
geodesic.

Similar to above, a geodesic segment is an isometric embedding b : [t1, t2] → X and a 
quasi-geodesic segment is a continuous quasi-isometric embedding β : [t1, t2] → X.

Basic properties of CAT(0) spaces. A proper geodesic metric space (X, dX) is CAT(0) if 
geodesic triangles in X are at least as thin as triangles in Euclidean space with the same 
side lengths. To be precise, for any given geodesic triangle �pqr, consider the unique 
triangle �pqr in the Euclidean plane with the same side lengths. For any pair of points 
x, y on edges [p, q] and [p, r] of the triangle �pqr, if we choose points x and y on edges 
[p, q] and [p, r] of the triangle �pqr so that dX(p, x) = dE(p, x) and dX(p, y) = dE(p, y)
then,

dX(x, y) ≤ dE2(x, y).
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Fig. 2. For y ∈ xβ , the concatenation of the geodesic segment [x, y] and the quasi-geodesic segment [y, z]β
is a quasi-geodesic.

For the remainder of the paper, we assume X is a proper CAT(0) space. A metric 
space X is proper if closed metric balls are compact. Here, we list some properties of 
proper CAT(0) spaces that are needed later (see [7]).

Lemma 2.3. A proper CAT(0) space X has the following properties:

i. It is uniquely geodesic, that is, for any two points x, y in X, there exists exactly one 
geodesic connecting them. Furthermore, X is contractible via geodesic retraction to 
a base point in the space.

ii. The nearest-point projection from a point x to a geodesic line b is a unique point 
denoted xb. In fact, the closest-point projection map

πb : X → b

is Lipschitz.

Remark 2.4. Let Z be a closed subset of X. For x ∈ X, we often denote the set of the 
nearest points in Z to x by xZ . We also write dX(x, Z) to mean the distance between x
and the set Z, that is dX(x, Z) = dX(x, y) for any y ∈ xZ . We often think of a geodesic 
or a quasi-geodesic as a subset of X instead of a map. For example, for x ∈ X and a 
quasi-geodesic β, we write dX(x, β) to mean the distance between x and the image of β
in X.

We show that if a geodesic segment is “perpendicular” to a quasi-geodesic, then the 
concatenation of the geodesic segment with the quasi-geodesic is also quasi-geodesic. 
Given a quasi-geodesic β, we use [�, �]β to denote the segment of β between two specified 
points (see Fig. 2).

Lemma 2.5. Consider a point x ∈ X and a (q, Q)–quasi-geodesic segment β connecting a 
point z ∈ X to a point w ∈ X. Let y be a point in xβ, and let γ be the concatenation of the 
geodesic segment [x, y] and the quasi-geodesic segment [y, z]β ⊂ β. Then γ = [x, y] ∪[y, z]β
is a (3q, Q)–quasi-geodesic.
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Proof. Consider γ : [t0, t2] → X and let t1 ∈ [t0, t2] be the time when γ(t1) = y, the 
restriction of γ to [t0, t1] is the parametrization of [x, y] given by arc length and the 
restriction of γ to [t1, t2] is the parametrization of [y, z]β given by β. To show that γ is 
a quasi-geodesic, we need to estimate the distance between a point in [x, y] and a point 
in [y, z]β . However, it is enough to show that dX(x, z) is comparable to |t2 − t0| because 
the argument for any other points along [x, y] and along [y, z]β is the same. We argue in 
two cases.

Case 1. Suppose 2dX(x, y) ≥ dX(z, y). Then,

3dX(x, y) ≥ dX(z, y) + dX(x, y)

Therefore,

dX(x, z) ≥ dX(x, y) ≥ 1
3
(
dX(z, y) + dX(x, y)

)
≥ 1

3

(
1
q |t2 − t1| − Q + |t1 − t0|

)

≥ 1
3q |t2 − t0| −

Q
3 .

Case 2. Suppose 2dX(x, y) < dX(z, y), then

3dX(x, y) ≤ dX(z, y) + dX(x, y) =⇒ 2dX(x, y) ≤ 2
3
(
dX(z, y) + dX(x, y)

)
.

We have

dX(x, z) ≥ dX(z, y) − dX(x, y) = dX(z, y) + dX(x, y) − 2dX(x, y)

≥
(
dX(z, y) + dX(x, y)

)
− 2

3
(
dX(z, y) + dX(x, y)

)
≥ 1

3(dX(z, y) + dX(x, y))

≥ 1
3

(
1
q |t2 − t1| − Q + |t1 − t0|

)
≥ 1

3q |t2 − t0| −
Q
3 .

This established the lower-bound. The upper-bound follows from the triangle inequality:

dX(x, z) ≤ dX(x, y) + dX(y, z) ≤ |t1 − t0| + q|t2 − t1| + Q ≤ q|t2 − t0| + Q.

It follows that γ is a (3q, Q)–quasi-geodesic. �
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The boundaries of CAT(0) spaces. A proper CAT(0) space X can be compactified via 
the visual boundary. The points of the visual boundary ∂∞X of X are geodesic rays 
(starting from o). Set X = X

⋃
∂∞X where points in X can be thought of as geodesic 

rays or geodesic segments starting from o. The space X is usually equipped with the 
cone topology where two geodesics are considered nearby if they fellow travel each other 
for a long time (see [7] for more details).

3. The κ–Morse geodesics of X

The goal of this section is to prove Theorem 3.10 which gives several equivalent char-
acterizations of the notion of a κ–Morse geodesic (or quasi-geodesic) ray.

3.1. Sublinear functions

We fix a function

κ : [0,∞) → [1,∞)

that is monotone increasing, concave and sublinear, that is

lim
t→∞

κ(t)
t

= 0.

Note that using concavity, for any a > 1, we have

κ(at) ≤ a

(
1
a
κ(at) +

(
1 − 1

a

)
κ(0)

)
≤ a κ(t). (1)

We say a quantity D is small compared to a radius r > 0 if

D ≤ r
2κ(r) . (2)

Remark 3.1. The assumption that κ is increasing and concave makes certain arguments 
cleaner, otherwise they are not really needed. One can always replace any sublinear 
function κ, with another sublinear function κ so that κ(t) ≤ κ(t) ≤ C κ(t) for some 
constant C and κ is monotone increasing and concave. For example, define

κ(t) = sup
{
λκ(u) + (1 − λ)κ(v)

∣∣∣ 0 ≤ λ ≤ 1, u, v > 0, and λu + (1 − λ)v = t
}
.

The requirement κ(t) ≥ 1 is there to remove additive errors in the definition of κ–Morse 
geodesics.

Lemma 3.2. For any D0 > 0, there exists D1, D2 > 0 depending on D0 and κ so that, for 
x, y ∈ X,
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d(x, y) ≤ D0 · κ(x) implies D1κ(x) ≤ κ(y) ≤ D2κ(x).

Proof. Since κ is sublinear, there is a constant A such that, for every u > 0,

κ(u) ≤ u

2D0
+ A.

For x ∈ X, define ‖x‖ = dX(o, x). Then

∣∣∣‖x‖ − ‖y‖
∣∣∣ ≤ dX(x, y) ≤ D0 · κ(x) ≤ D0 ·

(
‖x‖
2D0

+ A
)

≤ 1
2‖x‖ + D0A. (3)

We argue in two cases. Suppose ‖x‖ ≥ ‖y‖. Then, Equation (3) implies

‖x‖ ≤ 2‖y‖ + 2D0A,

and from Equation (1), we get

κ(x) ≤ (2 + 2D0A) · κ(y).

Thus

(2 + 2D0A)−1κ(x) ≤ κ(y) ≤ κ(x).

On the other hand, if ‖x‖ < ‖y‖, then Equation (3) implies

‖y‖ ≤ 3
2‖x‖ + D0A.

Again, by Equation (1) we have

κ(y) ≤
(

3
2 + D0A

)
· κ(x)

and hence

κ(x) < κ(y) ≤
(

3
2 + D0A

)
· κ(x).

Combining the two cases, we get

(2 + 2D0A)−1κ(x) ≤ κ(y) ≤
(

3
2 + D0A

)
· κ(x).

That is, the lemma holds for D1 = (2 + 2D0A)−1 and D2 = 3 + D0A. �
2
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(κ, n)–neighborhood of b

Fig. 3. The (κ, n)–neighborhood of the geodesic ray b.

Definition 3.3 (κ–neighborhood). For a closed set Z and a constant n define the 
(κ, n)–neighborhood of Z to be

Nκ(Z, n) =
{
x ∈ X

∣∣∣ dX(x, Z) ≤ n · κ(x)
}
.

In view of Remark 2.4, a geodesic or a quasi-geodesic can take the place of the set Z
in the above definitions. That is, we can write Nκ(b, n) to mean the (κ, n)–neighborhood 
of the image of the geodesic ray b. Or, we can use phrases like “the quasi-geodesic β is 
κ–contracting” or “the geodesic b is in a (κ, n)–neighborhood of the geodesic c” (see Fig 
3).

Definition 3.4. Let β and γ be two quasi-geodesic rays in X. If β is in some 
κ–neighborhood of γ and γ is in some κ–neighborhood of β, we say that β and γ κ–fellow 
travel each other. This defines an equivalence relation on the set of quasi-geodesic rays in 
X (to obtain transitivity, one needs to change n of the associated (κ, n)–neighborhood). 
We refer to such an equivalence class as a κ–equivalence class of quasi-geodesics. We 
denote the κ–equivalence class that contains β by [β] or we use the notation b for such 
an equivalence class when no quasi-geodesic in the class is given.

Lemma 3.5. Let b : [0, ∞) → X be a geodesic ray in X. Then b is the unique geodesic 
ray in any (κ, n)–neighborhood of b for any n. That is to say, distinct geodesic rays do 
not κ–fellow travel each other.

Proof. Consider any other geodesic ray c : [0, ∞) → X emanating from the same base-
point. Then, there is a time t0 where b(t0) �= c(t0). For a given t ≥ t0, let t′ be the time 
such that

dX(c(t), b) = dX
(
c(t), b(t′)

)
.

That is, b(t′) is the projection of c(t) to b. Since X is a CAT(0) space, we have

dX
(
c(t), b(t′)

)
≥ t · dX

(
c(t0), b

(
t′ t0

))
≥

dX
(
c(t0), b

)
· t.
t0 t t0
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This means that the distance from c(t) to b grows linearly with t and hence c is not 
contained in any (κ, n)–neighborhood of b. �
3.2. κ–Morse and κ–contracting sets

Definition 3.6 (weakly κ–Morse). We say a closed subset Z of X is weakly κ–Morse if 
there is a function

mZ : R2
+ → R+

so that if β : [s, t] → X is a (q, Q)–quasi-geodesic with end points on Z then

β[s, t] ⊂ Nκ

(
Z,mZ(q,Q)

)
.

We refer to mZ as the Morse gauge for Z. We always assume

mZ(q,Q) ≥ max(q,Q). (4)

Definition 3.7 (strongly κ–Morse). We say a closed subset Z of X is strongly κ–Morse if 
there is a function mZ : R2 → R such that, for every constant r > 0, n > 0 and every 
sublinear function κ′, there is an R = R(Z, r, n, κ′) > 0 where the following holds: Let 
η : [0, ∞) → X be a (q, Q)–quasi-geodesic ray so that mZ(q, Q) is small compared to r, 
let tr be the first time ‖η(tr)‖ = r and let tR be the first time ‖η(tR)‖ = R. Then

dX
(
η(tR), Z

)
≤ n · κ′(R) =⇒ η[0, tr] ⊂ Nκ

(
Z,mZ(q,Q)

)
.

Remark 3.8. Colloquially, the strongly Morse condition can be stated as saying that if 
η is in a sublinear neighborhood of Z for any sublinear function κ′ then, in fact, it is 
contained in a κ–neighborhood of Z. That is, sublinear fellow traveling implies uniform 
sublinear fellow traveling. This is a natural generalization of the notion of a Morse set 
which can be stated as fellow traveling implies uniform fellow traveling.

Definition 3.9 (κ–contracting). Recall that, for x ∈ X, we have ‖x‖ = dX(o, x). For a 
closed subspace Z of X, we say Z is κ–contracting if there is a constant cZ so that, for 
every x, y ∈ X

dX(x, y) ≤ dX(x, Z) =⇒ diamX

(
xZ ∪ yZ

)
≤ cZ · κ(‖x‖).

To simplify notation, we often drop ‖�‖. That is, for x ∈ X, we define

κ(x) := κ(‖x‖).

Theorem 3.10. Let b be a κ–equivalence class of quasi-geodesics in X. The following 
properties of b are equivalent.
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o
β(T )

β(tsi−1 )

b(si−1)

β(tsi
)

b(si)

β(t)

b

β

Fig. 4. The index i is chosen so that tsi−1 ≤ t ≤ tsi
.

(1) The class b contains a geodesic ray b that is κ–contracting.
(2) Every quasi-geodesic β ∈ b is κ–contracting.
(3) Every quasi-geodesic β ∈ b is strongly κ–Morse.
(4) There exists a quasi-geodesic β ∈ b that is strongly κ–Morse.
(5) Every quasi-geodesic β ∈ b is weakly κ–Morse.
(6) There exists a quasi-geodesic β ∈ b that is weakly κ–Morse.
(7) The class b contains a geodesic ray b that is weakly κ–Morse for (32, 0)–quasi-

geodesics.

Note that the implications (3) =⇒ (4) and (5) =⇒ (6) are immediate. Later in this 
section, we will prove (6) =⇒ (7) =⇒ (1) =⇒ (2) =⇒ (3) =⇒ (5) in separate statements. 
To prepare for the first statement, we study the finite geodesic segments connecting 
points of the κ–Morse quasi-geodesic.

Proposition 3.11. Let X be a proper CAT(0) space. Let β : [0, ∞) → X be a (q, Q)–quasi-
geodesic ray in X that is κ–Morse with mβ as its Morse gauge. For any given T ∈ (0, ∞), 
let b = bT be the finite geodesic segment connecting β(0) = o and β(T ). Then b is κ–Morse 
and the Morse-gauge of b is independent of T . That is, there exists m : R2 → R such 
that for every T ∈ [0, ∞) and for every (q′, Q′)–quasi-geodesic ζ : [s, t] → X with end 
points in b = bT , we have

ζ[s, t] ⊂ Nκ

(
b,m(q′,Q′)

)
.

Proof. We parametrize b : [0, d] → X by arc length so d = dX(β(0), β(T )). The geodesic 
segment b can be considered as a (1, 0)–quasi-geodesic with end points on β. Hence, for 
every 0 ≤ s ≤ d, there is ts ∈ [0, ∞) so that

dX
(
b(s), β(ts)

)
≤ mβ(1, 0) · κ(s). (5)

We take t0 = 0 and td = T . We show that β[0, T ] stays in some uniform κ–neighborhood 
of b by arguing that the times ts nearly cover the interval [0, T ]. Let 0 = s0, s1, . . . , sk = d

be a set of times so that |si − si+1| ≤ 1. Then, for every t ∈ [0, T ] we have ts0 ≤ t ≤ tsk . 
Hence there is an index i such that tsi−1 ≤ t and tsi ≥ t (see Fig. 4).
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We have

dX(β(tsi−1), β(tsi)) ≤ dX(β(tsi−1), b(si−1)) + dX(b(si−1), b(si)) + dX(b(si), β(tsi))

≤ mβ(1, 0) · κ(si−1) + 1 + mβ(1, 0) · κ(si).

Using the lower-bound condition for a (q, Q)–quasi-geodesic we have

|tsi − tsi−1 | ≤ qdX(β(tsi−1), β(tsi)) + qQ ≤ q
(
2mβ(1, 0)κ(si) + 1

)
+ qQ.

From this and using the upper-bound condition, we get

dX
(
β(tsi), β(t)

)
≤ q|tsi − t| + Q

≤ q|tsi − tsi−1 | + Q

≤ q2(2mβ(1, 0)κ(si) + 1) + q2Q + Q.

Combining this with Equation (5), we get that there is a function m1 : R2 → R depending 
only on the value of mβ(1, 0) so that

dX(β(t), b(si)) ≤ dX(β(t), β(tsi)) + dX(β(tsi)), b(si)) ≤ m1(q,Q) · κ(si). (6)

By Lemma 3.2, there exists m2 depending only on m1(q, Q) and κ such that

κ(si) = κ(b(si)) ≤ m2 · κ(β(t)).

Thus we have

β[0, T ] ⊂ Nκ

(
b,m2(q,Q)

)
. (7)

Now consider a (q′, Q′)–quasi-geodesic ζ : [s, t] → X with end points on b. To show 
that ζ stays near b, we modify ζ to a (9q′, Q′)–quasi-geodesic ζ ′ with end points on β
which implies that ζ ′ stays near β since β is κ–Morse. The Equation (7) then implies 
that ζ stays near b as well.

Let ys ∈ β be the closest-point in β to ζ(s) and let zs be the closest point in ζ to ys. 
By Lemma 2.5 the concatenation of the geodesic segment [ys, zs] and the quasi-geodesic 
segment [zs, ζ(t)]ζ forms a (3q′, Q′)–quasi-geodesic. Similarly we can find points yt ∈ β

and zt ∈ ζ and apply Lemma 2.5 again. Denote the concatenation of the geodesic segment 
[ys, zs], the quasi-geodesic segment [zs, zt]ζ and the geodesic segment [zt, yt] by ζ ′ which 
is a (9q′, Q′)–quasi-geodesic (see Fig. 5). Then

ζ ′ ⊂ Nκ

(
β,mβ(9q′,Q′)

)
. (8)

We say x is κ–close to y, if there is a constant c depending on q, Q, q′, Q′ and mβ such 
that dX(x, y) ≤ c · κ(x). It follows from Lemma 3.2 that if x is κ–close to y and y is 
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o
β(T )

ζ(t) ζ(s)

zs

ys
ztyt

b

β

ζ

Fig. 5. The concatenation of [ys, zs], [zs, zt]ζ and [zt, yt] is a quasi-geodesic with end points on β.

κ–close to z then x is κ–close z. Thus every point in ζ is κ–close to a point in ζ ′. Now 
Equation (8) and Equation (7) imply that

ζ ⊂ Nκ

(
b,m(q′,Q′)

)
for some m : R2 → R depending on q, Q and mβ only. �
Proposition 3.12 ((6) =⇒ (7)). If β : [0, ∞) → X is a κ–Morse quasi-geodesic ray then

(1) the class b = [β] contains a geodesic b, and
(2) the geodesic b is κ–Morse (in particular, for (32, 0)–quasi-geodesics).

Proof. For n ∈ N, let bn be the geodesic segment connecting o to β(n). Up to taking 
a subsequence, we can assume the geodesic segments bn converge to a geodesic ray b in 
X. Since β is κ–Morse, bn ⊂ Nκ

(
β, mβ(1, 0)

)
which means b ⊂ Nκ

(
β, mβ(1, 0)

)
. That 

is, b ∈ [β]. But the class [β] contains only one geodesic (Lemma 3.5) hence any other 
subsequence of bn has to also converge to b. In particular, every point in b is the limit of 
points in bn and every limit point of a sequence xn ∈ bn is on b.

The second part follows almost immediately from Proposition 3.11. For every quasi-
geodesic ζ with end points on b, there is n0 so that for n ≥ n0, the end points of ζ are 
distance 1 from some point in bn. Then ζ can be modified slightly to have end points in 
bn. Proposition 3.11 implies that ζ stays in a κ–neighborhood of bn. But this is true for 
every n ≥ n0. Hence ζ stays in some κ–neighborhood of b. �

To prepare for the next step, we recall a construction of quasi-geodesics from [11].

Proposition 3.13 ([11]). Given a geodesic segment (possibly infinite) b and points x, y ∈ X

such that dX(x, y) < dX(x, b), there exists a (32, 0)–quasi-geodesic ζ : [s0, s1] → X with 
endpoints on b such that ζ(s0) = xb,

1
4dX(xb, yb) ≤ dX(ζ(s0), ζ(s1)) < dX(xb, yb)

and there is a point p = ζ(t) on ζ so that
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dX(p, b) ≥ 1
80dX(xb, yb). (9)

Outline of the proof of Proposition 3.13. The proof of this statement is contained in the 
proof of [11, Theorem 2.9]. We now give the outline of the argument and a detailed ref-
erence to that proof. Given a geodesic b and points x and y that satisfy the assumptions, 
consider the following quadrilateral:

Q1 = [x, xb] ∪ [xb, yb] ∪ [y, yb] ∪ [x, y].

We first construct a smaller quadrilateral inside Q1 out of two points x′, y′ where x′ on 
the segments [x, xb] and y′ is either in the interior of the geodesic segment connecting 
x to y (Theorem 2.9, Case (2)) or on [y, yb] (Theorem 2.9, Case (1)) and consider the 
quadrilateral

Q2 = [x′, xb] ∪ [xb, yb] ∪ [y′, yb] ∪ [x′, y′]

with the property (in all cases) that

dX(x′
b, y

′
b) ≥

1
4dX(xb, yb).

Let D = dX(x′
b, y

′
b), and let a, b, c > 0 be real numbers such that

dX(x′, x′
b) = a D

dX(x′, y′) = b D

dX(y′, y′b) = c D

The quadrilateral Q2 also satisfies the condition that a + c − b > 0.1 and a + b + c < 8
(worst case is Case (1); in Case (3) it is shown that a + c − b > 0.2).

Next we construct a quasi-geodesics ζ(t) that starts from x′
b follows along the segment 

[x′
b, x

′] until it is close to the segment [x′, y′], then travels to [x′, y′] and follows [x′, y′]
until it is close to [y′b, y′], then it travels to [y′b, y′] and finally follows [y′b, y′] until y′b. 
[11, Lemma 2.7] establishes that ζ(t) is a (4(a + b + c), 0)–quasi-geodesic, that is, ζ is 
a (32, 0)–quasi-geodesic. Let p be a point on ζ(t) on the segment between x′ and y′. 
Equation (4) of [11] states that

dX(p, b) ≥ a + c − b
2 D.

Combining this with a + c − b > 0.1 we have

dX(p, b) ≥ 1
20dX(x′

b, y
′
b) ≥

1
80dX(xb, yb).

This finishes the proof. �
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Theorem 3.14 ((7) =⇒ (1)). Let b be a geodesic ray in X that is κ–Morse for 
(32, 0)–quasi-geodesics. Then b is κ–contracting. In fact, cb = 82000 mb(32, 0).

Proof. Given points x, y such that dX(x, y) < dX(x, b) let ζ : [s0, s1] → X and p = ζ(t)
be as in Proposition 3.13. Since b is κ–Morse for (32, 0)–quasi-geodesics, we have

dX(p, b) ≤ mb(32, 0) · κ(p).

On the other hand,

‖p‖ ≤ ‖xb‖ + dX
(
ζ(s0), ζ(t)

)
≤ ‖xb‖ + 32 · |s1 − s0| ζ is a (32, 0)–quasi-geodesic

≤ ‖xb‖ + (32)2 · dX
(
ζ(s0), ζ(s1)

)
ζ is a (32, 0)–quasi-geodesic

≤ ‖xb‖ + 1024 · dX(xb, yb)

≤ ‖xb‖ + 1024 · dX(x, y) Projection to b is Lipschitz.

≤ ‖xb‖ + 1024 · dX(x, xb)

≤ 1025 · ‖xb‖.

Therefore,

dX(xb, yb) ≤ 80 · dX(p, b)

≤ 80 · m(32, 0) · κ(p)

≤ 80 · m(32, 0) · κ(1025‖x‖)
≤ 82000 · m(32, 0) · κ(x).

That is, b is a κ–contracting geodesic with cb = 82000 · mb(32, 0). �
Proposition 3.15 ((1) =⇒ (2)). Le b be a geodesic ray and let β be a quasi-geodesic ray 
in b = [b]. Suppose that b is κ–contracting. Then β is also κ–contracting.

o
xβ

β

b

zb xb

z

x
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Proof. Since β and b are in the same class, there exists n such that

β ⊂ Nκ(b, n) and b ⊂ Nκ(β, n).

Let x, y be points in X so that dX(x, y) ≤ dX(x, β). We need to find an upper-bound 
for dX(x′, y′), where x′ ∈ πβ(x), y′ ∈ πβ(y). For the remainder of the proof, we use xβ

to denote a point in the set πβ(x) and yβ to denote a point in πβ(y). The upper-bound 
certainly exists if x ∈ Nκ(β, n). Thus assume d(x, β) ≥ nκ(x).

We claim that there is a point z along the geodesic segment [x, xβ] such that

dX(x, z) ≤ dX(x, b) and dX(z, b) ≤ 3n · κ(x).

To see this, note that

dX(x, β) ≤ dX(x, xb) + dX(xb, β) ≤ dX(x, xb) + n · κ(xb). (10)

Meanwhile, the projection of the segment [o, x] to the geodesic b is the segment [o, xb]. 
Since projections in CAT(0) spaces are Lipschitz, ‖xb‖ ≤ ‖x‖. Thus κ(xb) ≤ κ(x). 
Therefore, if we choose z to have distance n ·κ(x) from xβ, we are sure to have dX(z, x) ≤
dX(x, b). Also,

dX(z, b) ≤ dX(z, zβ) + dX(zβ , b) ≤ n · κ(x) + n · κ(xβ). (11)

Now, note that

‖xβ‖ ≤ ‖x‖ + dX(x, xβ) ≤ 2‖x‖.

Hence, κ(xβ) ≤ 2κ(x). This and Equation (11) imply the second assertion in the claim.
Now, since b is contracting,

dX(zb, xb) ≤ cb · κ(x).

Therefore,

dX(xb, xβ) ≤ dX(xb, z) + dX(z, xβ)

≤ 3n · κ(x) + n · κ(x) = 4n · κ(x). (12)

Now let x, y ∈ X be such that dX(x, y) ≤ dX(x, β). Note that,

‖y‖ ≤ ‖x‖ + dX(x, y) ≤ ‖x‖ + dX(x, β) ≤ 2‖x‖.

Hence, applying Equation (12) to x and y we have

dX(xb, xβ) ≤ 4n · κ(x) and dX(yb, yβ) ≤ 4n · κ(y) ≤ 8n · κ(x).
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Also, from Equation (10), we have

dX(x, b) ≥ dX(x, β) − n · κ(xb) ≥ dX(x, y) − n · κ(x).

Therefore, there is a point y′ ∈ [x, y] with

dX(x, y′) ≤ dX(x, b) and d(y, y′) ≤ n · κ(x).

Thus, since closest-point projection is distance non-increasing,

dX(xβ , yβ) ≤ dX(xb, yb) + dX(xb, xβ) + dX(yb, yβ)

≤ dX(xb, y
′
b) + dX(y′b, yb) + 12 · n · κ(x)

≤ cb · κ(x) + n · κ(x) + 12 · n · κ(x)

≤ (cb + 13n) · κ(x).

That is β is κ–contracting with cβ = (cb + 13n). �
We now prove that every κ-contracting set is also strongly κ-Morse. This in particular 

proves the implication (2) =⇒ (3).

Theorem 3.16 (Contracting implies strongly κ–Morse). Let Z be a closed subspace that 
is κ–contracting. Then Z is strongly κ-Morse.

Proof. Let cZ be the contracting constants for Z. Set

m0 = q
(
(q + 1) + qcZ + Q

)
and m1 = qcZ + q + Q. (13)

Claim. Consider a time interval [s, s′] during which η is outside of Nκ(Z, m0). Then

|s′ − s| ≤ m1
(
dX

(
η(s), Z

)
+ dX

(
η(s′), Z

))
. (14)

Proof of the Claim. Let

s = t0 < t1 < t2 < · · · < t� = s′

be a sequence of times such that, for i = 0, . . . , �− 2, we have ti+1 is a first time after ti
where

dX
(
η(ti), η(ti+1)

)
= dX(η(ti), Z) and dX

(
η(t�−1), η(t�)

)
≤ dX(η(t�−1), Z).

To simplify the notation, we define

ηi = η(ti), ri = ‖η(ti)‖, di = dX(ηi, Z) and πi = (ηi)Z .
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Recall that (ηi)Z is the set of the closest points in Z to ηi. Note that, by assumption

di ≥ m0 · κ(ri).

Since Z is contracting,

dX
(
π0, π�

)
≤

�−1∑
i=0

diamX

(
πi, πi+1

)
≤

�−1∑
i=0

cZ · κ(ri).

But η is a (q, Q)–quasi-geodesic, hence,

|s′ − s| ≤ q dX(η0, η�) + Q

≤ q
(
d0 + dX

(
π0, π�

)
+ d�

)
+ Q (15)

≤ q cZ

(
�−1∑
i=1

κ(ri)
)

+ q (d0 + d�) + Q.

On the other hand,

|s′ − s| =
�−1∑
i=0

|ti+1 − ti| ≥
�−1∑
i=0

(
1
qdX(ηi, ηi+1) − Q

)
.

But, for i = 0, . . . , (� − 2) we have dX(ηi, ηi+1) = di and

dX(η�−1, η�) ≥ d�−1 − d�.

Hence,

|s′ − s| ≥
�−1∑
i=0

(
m0

q · κ(ri) − Q
)
− d�

q . (16)

Combining Equation (15) and Equation (16) we get

q (d0 + d�) + Q + d�
q ≥

(
m0

q − q cZ − Q
) �−1∑

i=0
κ(ri).

But, from (13), we have Q ≤ m0 ≤ r0 and

q (d0 + d�) + Q + d�
q ≤ (q + 1)(d0 + d�) and

(
m0

q − q cZ − Q
)

≥ (q + 1).

Which implies
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mZ(q,Q) · κ(r)
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n · κ′(R)tlast

s
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Fig. 6. The concatenation of a geodesic segment [x, y] and the quasi-geodesic segment [y, z1] is a quasi-
geodesic.

�−1∑
i=0

κ(ri) ≤ d0 + d� and by Equation (15) |s′ − s| ≤ m1(d0 + d�).

This proves the claim. �

Now let tlast be the last time η is in Nκ(Z, m0) and consider the quasi-geodesic path 
η[tlast, tR] (see Fig. 6). Since this path is outside of Nκ(Z, m0), we can use Equation (14)
to get

|R − tlast| ≤ m1
(
dX(η(tlast), Z) + dX(η(tR), Z)

)
.

But

dX(η(tlast), Z) ≤ m0 · κ(η(tlast)) ≤ m0 · κ(R) and dX(η(tR), Z) ≤ n · κ′(R).

Therefore,

|R − tlast| ≤ m0 · m1 · κ(R) + n · κ′(R)

Since m0, m1 and n are given and κ and κ′ are sublinear, there is a value of R depending 
on m0, m1, n, r, κ and κ′ such that

m0 · m1 · κ(R) + n · κ′(R) ≤ R − r. (17)

For any such R, we then have

tlast ≥ r.

We show that η[0, tlast] stays in a larger κ–neighborhood of Z. Consider any other 
subinterval [s, s′] ⊂ [0, tlast] where η exits Nκ(Z, m0). By taking [s, s′] as large as possible, 
we can assume η(s), η(s′) ∈ Nκ(Z, m0). In this case,
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dX(η(s), Z) ≤ m0 · κ(η(s)) and dX(η(s′), Z) ≤ m0 · κ(η(s′)),

again applying Equation (14), we get

|s′ − s| ≤ m0 m1 ·
(
κ(η(s)) + κ(η(s′))

)
,

and thus ∣∣∣‖η(s′)‖ − ‖η(s)‖
∣∣∣ ≤ q m0 m1 ·

(
κ(η(s)) + κ(η(s′))

)
+ Q

≤ (q m0 m1 + Q) ·
(
κ(η(s)) + κ(η(s′))

)
≤ 2(q m0 m1 + Q) · max

(
κ(η(s)), κ(η(s′))

)
.

Applying Lemma 3.2, we have that

κ(η(s′)) ≤ m2 · κ(η(s)),

for some m2 depending on cZ , q, Q and κ. Therefore, for any t ∈ [s, s′]

|t− s| ≤ m0 m1(1 + m2) · κ(η(s)). (18)

As before, this implies,∣∣∣‖η(t)‖ − ‖η(s)‖
∣∣∣ ≤ q m0 m1(1 + m2) · κ(η(s)) + Q ≤ (q m0 m1(1 + m2) + Q) · κ(η(s)).

Applying Lemma 3.2 again, we have

κ(η(s)) ≤ m3 · κ(η(t)), (19)

for some m3 depending on cZ , q, Q and κ.
Now, for any t ∈ [s, s′] we have

dX(η(t), Z) ≤ dX(η(t), η(s)) + r0
≤ q|t− s| + Q + m0 · κ(η(s))

≤ (qm0 m1(1 + m2) + Q + m0) · κ(η(s)) (Equation (18))

≤ (qm0 m1(1 + m2) + Q + m0) m3 · κ(η(t)). (Equation (19))

Now setting

mZ(q,Q) = (qm0 m1(1 + m2) + Q + m0) m3 (20)

we have that
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Fig. 7. The quasi-geodesic segment γ = γ0 ∪ γ1 ∪ γ2 is in a sublinear neighborhood of β.

η[s, s′] ⊂ Nκ

(
Z,mZ(q,Q)

)
and hence η[0, tlast] ⊂ Nκ

(
Z,mZ(q,Q)

)
.

The R we have chosen depends on the value of q and Q. However, the assumption that 
mZ(q, Q) is small compared to r (see Equation (2)) gives an upper-bound for the values 
of q and Q. Hence, we can choose R to be the radius associated to the largest possible 
value for q and the largest possible value for Q. This finishes the proof.

Note that, the assumption that mZ(q, Q) is small compared to r is not really needed 
here and any upper-bound on the values of q and Q would suffice. But this is the as-
sumption we will have later on and hence it is natural to state the theorem this way. �
Remark 3.17. As can be seen in Equation (17), the value of R can be calculated explicitly, 
namely, R depends on κ, κ′, q, Q, cZ and n. That is, all we need to know from the set Z
is the function κ and the value of the constant cZ .

We now show when Z is the image of a quasi-geodesics ray, the notion of strongly 
κ-Morse is indeed stronger than the notion of weakly κ-Morse hence proving (3) =⇒ (5).

Lemma 3.18 (Strongly κ–Morse implies weakly κ-Morse). Let Z be the image of a 
(q0, Q0)–quasi-geodesic ray β. If Z is strongly κ–Morse then Z is weakly κ–Morse.

Proof. Let γ : [s, t] → X be a (q, Q)–quasi-geodesic with end points in Z. Assume γ(s) =
β(s′) and γ(t) = β(t′). Let r = max|γ(u)| for u ∈ [s, t] and let x ∈ Z be a point such 
that R = |x| is much larger than r (to be determined later). Consider the points xγ (a 
point in the projection of x to γ) and oγ (a point in the projection of o to γ) and write 
γ as a concatenation of

γ0 = [γ(s), oγ ]γ , γ1 = [oγ , xγ ]γ and γ2 = [xγ , γ(t)]γ .

Since the projection map is coarsely Lipschitz, the shadow of γ1 to β coarsely covers 
[β(s′), β(t′)]β . That is, there is a constant L > 0 depending only on Q0 and q0 and points 
γ(us) and γ(ut) along γ1 such that γ(us) projects L–close to β(s′) and γ(ut) projects 
L–close to β(t′) (see Fig. 7).
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Now, applying Lemma 4.3 twice, we have that the path

γ′ = [o, oγ ] ∪ [oγ , xγ ]γ ∪ [xγ , x]

is a (81q, Q)–quasi-geodesic. For R large enough, the condition of κ-strongly Morse im-
plies that γ′ is contained in the κ–neighborhood Nκ(Z, mβ(81q, Q)) of β. In particular,

dX(β(s′), γ(us)) ≤ mβ(81q,Q)·κ(γ(us)) and dX(β(s′), γ(us)) ≤ mβ(81q,Q)·κ(γ(ut)).

But γ0 and γ2 are (q, Q)–quasi-geodesics. Therefore, there is a constant D depending on 
β, q and Q such that

|us − s| ≤ D · κ(γ(us)) and |t− ut| ≤ D · κ(γ(us)).

Thus, γ0 and γ1 are not too long and they are entirely contained in a κ–neighborhood 
of β. And we have already shown that γ1 which is a subsegment of γ′ is contained in a 
κ–neighborhood of β. Therefore, γ itself is contained in a κ neighborhood of β. �

This concludes the proof of Theorem 3.10. We finish with a couple of corollaries of 
Theorem 3.16. Recall that, a (q, Q)–quasi-geodesic β is in b if β is contained in some 
(κ, n)–neighborhood of the geodesic ray b ∈ b. A priori, it might be possible for the 
constant n to go to infinity even as q and Q remain bounded. However, this does not 
happen.

Corollary 3.19. Let b be a κ–contracting geodesic ray and let mb be as in Theorem 3.16
(where Z is the image of b). Then, for any (q, Q)–quasi-geodesic β ∈ [b], we have

β ⊂ Nκ

(
b,mb(q,Q)

)
and b ⊂ Nκ

(
β, 2mb(q,Q)

)
.

Proof. Since β ∈ [b], there is a constant n so that β ⊂ Nκ(b, n). For every r, let tr be the 
first time when β(tr) has norm r. We have

dX(β(tR), b) ≤ n · κ(R)

for every R. Now Theorem 3.16 implies that

β[0, tr] ⊂ Nκ

(
b,mb(q,Q)

)
for every r. This proves the first assertion.

To see the second assertion, consider a point br = b(r), let βr = β(tr) and let q = πb(βr). 
Then, the first assertion implies

dX(βr, q) ≤ mb(q,Q) · κ(r).
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Hence,

dX(br, q) ≤ r − dX(o, q)

≤ r −
(
dX(o, βr) − dX(βr, q)

)
≤ mb(q,Q) · κ(r).

Therefore,

dX(br, β) ≤ dX(br, βr) ≤ dX(br, q) + dX(q, βr) ≤ 2mb(q,Q) · κ(r),

which implies b ⊂ Nκ

(
β, 2mb(q, Q)

)
. �

Corollary 3.20. If β ∈ b is a (q, Q)–quasi-geodesic, then the function

mβ(�, �) ≤ mb(�, �) + 2mb(q,Q)

is a Morse gauge for β. In particular, the Morse gauge depends only on mb, q and Q and 
not on the particular quasi-geodesic β.

Proof. Let β′ ∈ b be a (q′, Q′)–quasi-geodesic. Let β′
r be a point along β′ with norm r, 

let p = πb(β′
r) and let q be the closest point in β to p. Note that ‖p‖ ≤ r. Hence,

dX(β′
r, β) ≤ dX(β′

r, p) + dX(p, q)

≤ mb(q′,Q′) · κ(r) + 2mb(q,Q) · κ(p) ≤
(
mb(q′,Q′) + 2mb(q,Q)

)
· κ(r)

This finishes the proof. �
4. κ–Morse boundary

Recall the definition of κ–fellow traveling (Definition 3.4) which defines an equivalence 
relation on the set of all quasi-geodesic rays in X. Recall also that all geodesic rays and 
quasi-geodesic rays are assumed to start from the fixed base-point o.

Definition 4.1 (κ–Morse boundary set). The κ–Morse boundary of X, ∂κX, is the set 
of κ–equivalence classes quasi-geodesic rays in X that satisfy any one of the equivalent 
properties given in Theorem 3.10. Since each class contains a unique geodesic which 
is κ–contracting (again, by Theorem 3.10) we could also define ∂κX to be the set of 
κ–contracting geodesic rays in X.

We equip ∂κX with a topology which is a coarse version of the visual topology. 
Roughly speaking, we think of a point a ∈ ∂κX as being in a small neighborhood of 
b ∈ ∂κX if, for some large radius r, every (q, Q)–quasi-geodesic α ∈ a, where mb(q, Q) is 
small compared to the radius r, fellow travels the geodesic b ∈ b up to the radius r. As 
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we shall see, this is strictly stronger than assuming that the geodesics a ∈ a and b ∈ b
fellow travel each other for a long time.

We introduce the following notations. Let β be a (q, Q)–quasi-geodesic ray that is 
κ–Morse and let mβ be the associated Morse gauge functions as in Theorem 3.16. For 
r > 0, let tr be the first time where ‖β(t)‖ = r and define:

βr = β(tr) and β|r = β[0, tr]

which we consider as a subset of X.

Definition 4.2 (neighborhoods). Let b ∈ ∂κX and b ∈ b be the unique geodesic in the class 
b. Define Uκ(b, r) to be the set of points a ∈ ∂κX such that, for any (q, Q)–quasi-geodesic 
α ∈ a where mb(q, Q) is small compared to r (see Equation (2)) we have

α|r ⊂ Nκ

(
b,mb(q,Q)

)
.

4.1. Neighborhood system

In this sub-section we show that the sets Uκ(γ, r) generate a neighborhood system 
which can be used to define a topology for ∂κX. We start with a technical lemma.

Lemma 4.3. Let X be a proper, complete metric space. Let b be a geodesic ray and γ be 
a (q, Q)–quasi-geodesic ray. For r > 0, assume that dX(br, γ) ≤ r/2. Then, there exists a 
(9q, Q)–quasi-geodesic γ′ so that

γ′ ∈ [b], and γ|r/2 = γ′|r/2.

Proof. Let q be a point in γ that is closest to br and let R > 0 be such that the ball of 
radius R centered at o contains [o, q]γ . Now let q′ be the point in [0, q]γ closest to bR. 
Then

‖q′‖ ≥ ‖bR‖ − dX(bR, q′)

≥ R − dX(bR, q)

≥ R −
(
dX(bR, br) + dX(br, q)

)
≥ R − (R − r) − r

2 = r
2

Applying Lemma 2.5, we have a (3q, Q)–quasi-geodesic segment

ζ = [o, q′]γ ∪ [q′, bR].



Y. Qing, K. Rafi / Advances in Mathematics 404 (2022) 108442 27
o

q

q′

γ

b

br
bR

r R

Fig. 8. The concatenation of [o, q′]γ , [q′, bR] and b[R,∞) is a (9q,Q)–quasi-geodesic in the class b.

Furthermore, by construction, ‖q′‖ ≤ R = ‖bR‖. Therefore, the projection of any point 
on the geodesic b[R, ∞) to ζ is the point bR. Applying Lemma 2.5 again we have that 
the concatenation

γ′ = ζ ∪ b[R,∞)

is a (9q, Q)–quasi-geodesic ray (see Fig. 8).
Lastly, since ‖q′‖ ≥ r/2, we have γ|r/2 = ζ|r/2 = γ′|r/2. �

Proposition 4.4. For each b ∈ ∂κX and r > 0, there exists a radius rb such that

(1) for any point a there exists ra so that

a ∈ Uκ(b, rb) =⇒ Uκ(a, ra) ⊂ Uκ(b, r).

(2) for any point a there exists ra so that

a /∈ Uκ(b, r) =⇒ Uκ(a, ra) ∩ Uκ(b, rb) = ∅.

Proof. For the rest of this proof, we assume q and Q are such that if ma(q′, Q′) is 
small compared to r then q′ ≤ q and Q′ ≤ Q. Hence, if we prove a statement for all 
(q, Q)–quasi-geodesics, we have also shown the statement for all (q′, Q′)–quasi-geodesics 
where ma(q′, Q′) is small compared to r.

Let b ∈ b be the unique geodesic ray in b. We choose rb such that

rb ≥ 2r and mb(9q,Q) ≤ rb
2κ(rb)

.

Also, letting n(q, Q) = mb(9q, Q), we require that rb ≥ R where R = R(b, r, n, κ) is as in 
Theorem 3.16.

Proof of Part (1). Let a ∈ Uκ(b, rb) and let a ∈ a be the unique geodesic ray in a. Choose 
ra such that,

ra ≥ 2rb and ma(q,Q) ≤ ra
.
4κ(ra)
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Now consider c ∈ Uκ(a, ra) and let γ ∈ c be a (q, Q)–quasi-geodesic. The proof of Corol-
lary 3.19 also shows that

dX(a(ra), γ|ra) ≤ 2ma(q,Q) · κ(ra) ≤
ra
2 .

We apply Lemma 4.3, with radius being ra, to modify γ to a (9q, Q)–quasi-geodesic 
γ′ ∈ a. Since, rb ≤ ra/2, we have γ|rb = γ′|rb . Also, a ∈ Uκ(b, rb) and mb(9q, Q) is small 
compare to rb, therefore

γ|rb = γ′|rb ⊂ Nκ

(
a,ma(9q,Q)

)
.

But γ|ra is actually a (q, Q)–quasi-geodesic. Hence, Theorem 3.16 (with n(q, Q) =
ma(9q, Q)) implies that

γ|r ⊆ Nκ

(
a,ma(q,Q)

)
.

This holds for every such γ ∈ c, thus c ∈ Uκ(b, r). And this argument holds for every 
c ∈ Uκ(a, ra), therefore Uκ(a, ra) ⊂ Uκ(b, r).

Proof of Part (2). In view of Corollary 3.20, there exists a constant u > 0, depending on 
q and Q, such that, for any (q, Q)–quasi-geodesic α ∈ a we have

mα(1, 0) + 2ma(q,Q) ≤ u.

Choose ra large enough so that

ra ≥ max
(
2u · κ(ra), 2rb

)
.

Assume Uκ(a, ra) ∩Uκ(b, rb) is non-empty and consider a point c in this set. Let c ∈ c be 
the unique geodesic ray in this class. We have to show a ∈ Uκ(b, r).

Consider a (q, Q)–quasi-geodesic α ∈ a. Since, c ∈ Uκ(a, ra),

dX(c(ra), a) ≤ ma(1, 0) · κ(ra).

Defining p = πa(c(ra)), we have ‖p‖ ≤ ra. Therefore, the second assertion in Corollary 3.19
implies

dX(p, α) ≤ 2ma(q,Q) · κ(p) ≤ 2ma(q,Q) · κ(ra).

Hence,

dX(c(ra), α) ≤ dX(c(ra), p) + dX(p, α) ≤ u · κ(ra) ≤
ra
2 .

We can now apply Lemma 4.3 to α and c with radius ra to obtain a (9q, Q)–quasi-geodesic 
α′ ∈ c where (using ra ≥ rb), α′|rb = α|rb (see Fig. 9).
2
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Fig. 9. The quasi-geodesic α′ (in red) is in the class c which is contained in Uκ(b, r). Therefore, α|r = α′|r
is near b ∈ b. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Since c ∈ Uκ(b, rb), we have

α|rb = α′|rb ⊂ Nκ

(
b,mb(9q,Q)

)
.

But α|rb is really a (q, Q)–quasi-geodesic. Hence, letting n(q, Q) = mb(9q, Q), Theo-
rem 3.16 implies that

α|r ⊂ Nκ

(
b,mb(q,Q)

)
.

But this holds for every such α, thus a ∈ Uκ(b, r). This finishes the proof. �
Remark 4.5. Let φ : ∂κX × R → R be a map so that rb = φ(b, r) as above. We can 
define a similar map for ra. Note that, in either part of Proposition 4.4, the radius ra
does not really depend on b or r. It depends on a, rb and the maximum value of q and 
Q so that mb(q, Q) is small compared to r. But such an upper-bound always exists, for 
example, q, Q ≤ mb(q, Q) ≤ r ≤ rb. Hence, there are maps ψ1, ψ2 : ∂κX ×R → R where 
ra = ψ1(a, rb) in the first part of Proposition 4.4 and ra = ψ2(a, rb) in the second part. 
These maps make the dependence of constants more clear and we will refer to these maps 
in the proof of Theorem 4.9. Using this notation, Proposition 4.4 can be written as

a ∈ Uκ

(
b, φ(b, r)

)
=⇒ Uκ

(
a, ψ1

(
a, φ(b, r)

))
⊂ Uκ(b, r), (21)

and

Uκ

(
a, ψ2

(
a, φ(b, r)

))
∩ Uκ

(
b, φ(b, r)

)
�= ∅. =⇒ a ∈ Uκ(b, r). (22)

A fundamental system of neighborhoods. We will show that the sets Uκ(b, r) form a 
fundamental system of neighborhoods for ∂κX that can be used to define a topology on 
∂κX. For b ∈ ∂κX, define

B(b) =
{
V ⊂ ∂κX

∣∣∣ U(b, r) ⊂ V for some r > 0
}
.
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We would like to equip ∂κX with a topology where B(b) is the set of neighborhoods of 
b. Recall that V is a neighborhood of b if it contains an open set that includes b. We 
need to check that B(b) has certain properties.

Lemma 4.6. For every b ∈ ∂sX, the set B(b) satisfies the following properties:

(i) Every subset of ∂κX which contains a set belonging to B(b) itself belongs to B(b).
(ii) Every finite intersection of sets of B(b) belongs to B(b).
(iii) The element b is in every set of B(b).
(iv) If V ∈ B(b) then there is W ∈ B(b) such that, for every a ∈ W, we have V ∈ B(a).

Proof. Property (i) is immediate from the definition of B(b). To see (ii), consider sets 
V1, . . . , Vk ∈ B(b) and let ri be such that Uκ(b, ri) ⊂ Vi and let r = max ri. Note that 
Uκ(b, r) ⊂ Uκ(b, ri) by definition. Therefore,

Uκ(b, r) ⊂
⋂
i

Vi

and hence the intersection is in B(b). Property (iii) holds since, by Corollary 3.19, every 
(q, Q)–quasi-geodesic β ∈ b lies inside Nκ

(
b, mb(q, Q)

)
and hence b ∈ Uκ(b, r) for every 

r. Property (iv) follows from the first part of Proposition 4.4. �
These properties for B(b) are characteristic of the set of neighborhoods of b. That is,

Proposition 4.7 ([6] Proposition 2). If to each elements b ∈ ∂κX there corresponds a set 
B(b) of subsets of ∂κX such that properties (i) to (iv) above are satisfied, then there is 
a unique topological structure on ∂κX such that for each b ∈ ∂κX, B(b) is the set of 
neighborhoods of b in this topology.

We now equip ∂κX with this topological structure. Then a set W ⊂ ∂κX is open if 
for every b ∈ W there is r > 0 such that Uκ(b, r) ⊂ W. We refer to this topology as the 
visual topology on quasi-geodesics and from now on we consider ∂κX to be a topological 
space.

Properties of the topology. In this section, we establish some topological properties of 
∂κX. We will show that ∂κX is metrizable and, for κ′ ≺ κ, we show that the inclusion 
∂κ′X ⊂ ∂κX is a topological embedding.

We make use the following criterion for a topological space to be metrizable.

Theorem 4.8 (Theorem 3, [14]). Assume, for every point b of a topological space, there ex-
ists a monotonic decreasing sequence U1(b), U2(b), · · · , Ui(b), · · · of neighborhoods whose 
intersection is b and such that the following holds: For every point b of the neighborhood 
space and every integer i, there exists an integer j = j(b, i) > i such that if a is any 
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point for which Uj(a) and Uj(b) have a point in common then Uj(a) ⊂ Ui(b). Then the 
space is homeomorphic to a metric space.

We check this condition for ∂κX.

Theorem 4.9. The space ∂κX is metrizable.

Proof. Recall the maps φ, ψ1, ψ2 : ∂κX × R → R from Remark 4.5. For i ∈ N and 
a ∈ ∂κX, define

Ui(a) = Uκ(a, ri(a)), where ri(a) = max
(
i, ψ1(a, i), ψ2(a, i)

)
.

Also, given b and i, we define

j = j(b, i) =
⌈
φ
(
b, φ(b, ri(b))

)⌉
.

Assume Uj(a) and Uj(b) have a point in common, that is,

Uκ

(
a, rj(a)

)
∩ Uκ

(
b, rj(b)

)
�= ∅.

Since,

rj(a) ≥ ψ2(a, j) ≥ ψ2

(
a, φ

(
b, φ(b, ri(b))

))
and rj(b) ≥ j ≥ φ(b, φ(b, ri(b)))

Equation (22) implies

a ∈ Uκ

(
b, φ

(
b, ri(b)

))
.

Now, Equation (21) implies

Uκ

(
a, ψ1

(
a, φ(b, ri(b))

))
⊂ Uκ

(
b, ri(b)

)
.

But

rj(a) ≥ ψ1(a, φ(b, φ(b, ri(b)))) ≥ ψ1(a, φ(b, ri(b))).

Therefore,

Uκ

(
a, rj(a)

)
⊂ Uκ

(
b, ri(b)

)
.

Which is to say Uj(a) ⊂ Ui(b). The theorem follows from Theorem 4.8. �
Lastly, we prove that different boundaries associated with different sublinear functions 

are nested.
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Proposition 4.10. Let κ, κ′ be sublinear functions such that, for some M > 0,

κ′(t) ≤ M · κ(t), ∀t > 0. (23)

Then, ∂κ′X ⊆ ∂κX as a subspace with the subspace topology.

Proof. It is immediate from the definition that ∂κ′X is a subset of ∂κX. First we have 
to show that the intersection of an open set in ∂κX with ∂κ′X is open in ∂κ′X.

Let V be an open set in ∂κX and consider b ∈ V∩∂κ′X. Let mb be the κ–Morse gauge 
for b and let m′

b be the κ′–Morse gauge for b. Let radius r > 0 be such that Uκ(b, r) ⊂ V. 
We need to find radius R so that Uκ′(b, R) ⊂ Uκ(b, r). For any q, Q, where mb(q, Q) is 
small compared to r, there is R = R(b, r, m′

b, κ
′(q, Q)) as in Theorem 3.16. We denote the 

maximum such radius again with R.
Let a ∈ Uκ′(b, R) and let α ∈ a be a (q, Q)–quasi-geodesic such that mb(q, Q) is small 

compared to r. Taking R even larger if needed, we can assume that m′
b(q, Q) is small 

compare to R. Then, a ∈ Uκ′(b, R) implies that

dX(αR, b) ≤ m′
b(q,Q) · κ′(R).

By Theorem 3.16,

α|r ⊂ Nκ

(
b,mb(q,Q)

)
.

Since this holds for every such α ∈ a, we have a ∈ Uκ(b, r). Therefore,

Uκ′(b,R) ⊂ Uκ(b, r) ⊂ V.

That is, every such point b is in the interior of V ∩ ∂κ′X and V ∩ ∂κ′X is open in ∂κ′X.
Next we show that every open set in ∂κ′X is the intersection of an open set of ∂κX

with ∂κ′X. It suffices to show that given an open set V ′ ⊂ ∂κ′X, and a point c ∈ V ′, 
there exists a neighborhood Uκ(c, r) such that Uκ(c, r) ∩ ∂κ′X ⊂ V ′. By definition of the 
topology there exists an open set Uκ′(c, rc) such that

c ∈ Uκ′(c, rc) ⊂ V ′.

Now by Theorem 3.16, there exists Rc such that for any (q, Q)–quasi-geodesic η where 
(q, Q) is small compared to rc,

dX
(
η(tR), c

)
≤ κ(Rc) =⇒ η[0, trc ] ⊂ Nκ′

(
c,mc(q,Q)

)
.

That is to say,

Uκ(c,R) ∩ ∂κ′X ⊂ Uκ′(c, rc)
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Let Wc be the interior of Uκ(c, R) which is an open set in ∂κX and still contains c. We 
have

Wc ∩ ∂κ′X ⊂ Uκ′(c, rc),

and therefore,

V ′ =
⋃

c∈V′

(Wc ∩ ∂κ′X) =
( ⋃

c∈V′

Wc

)
∩ ∂κ′X.

This finishes the proof. �
5. Boundary of a CAT(0) group

Let G be a finitely generated group that acts geometrically on X, that is, properly 
discontinuously, co-compactly and by isometries. Let o denote the base-point of X. Equip 
G with the word length associated to some generating set. Also, given an element g ∈ G, 
denote the image of o under the action of g by go. Then the map

Ψ: G → X, Ψ(g) = go

defines a quasi-isometry between G and X which means there is an association between 
quasi-geodesics in G and in X. Hence, we can define ∂κG to be ∂κX. Namely, consider 
a path P = {gi}∞i=0 in G such that g0 = id and gi and gi+1 differ by a generator. Define 
βP to be the ray in X that is a concatenation of geodesic segments [gi, gi+1]. If βP is a 
κ-Morse quasi-geodesic in X, then we say gi → [βP ]. In other words, ∂κG is the set of 
κ–equivalence classes of quasi-geodesic rays in G so that the associated quasi-geodesic 
in X is κ-Morse.

However, G may act geometrically on different CAT(0) spaces. To show ∂κG is well 
defined, we need to show different such spaces give the same boundary for G. We show, 
more generally, that ∂κX is invariant under quasi-isometry.

Theorem 5.1. Consider proper CAT(0) metric spaces X and Y and let Φ: X → Y be 
a (k, K)–quasi-isometry. Then Φ induces a homeomorphism Φ� : ∂κX → ∂κY for every 
sublinear function κ where, for b ∈ ∂κX and β ∈ b,

Φ�(b) = [Φ ◦ β].

Proof. For a quasi-geodesic ray ζ : [0, ∞) → X in X let Φζ be a quasi-geodesic ray in Y
constructed from the composition of ζ and Φ as in Definition 2.2. It is immediate from 
the definition that two quasi-geodesics ζ and ξ in X κ–fellow travel each other if and only 
if Φζ and Φξ κ–fellow travel each other in Y . Also (again immediate from the definition) 
the property of being κ–Morse is preserved under a quasi-isometry. Hence, [ζ] ∈ ∂κX
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if and only if [Φζ] ∈ ∂κY . Therefore, Φ� defined as above gives a bijection between 
∂κX and ∂κY . We need to show that (Φ�)−1 is continuous. Then, the same argument 
applied in the other direction will show that Φ� is also continuous which means Φ� is a 
homeomorphism.

Let V be an open set in ∂κX, bX ∈ V and Uκ(bX , r) be a neighborhood b that is 
contained in V. Let bY = Φ�(bX). We need to show that there is a constant r′ such that, 
for every point aY ∈ Uκ(bY , r′), we have

aX = (Φ�)−1(aY ) ∈ Uκ(bX , r).

Let q′ and Q′ be constants (depending on q, Q, k and K) such that if ζ is a (q, Q)–quasi-
geodesic where mbX (q, Q) is small compared to r then Φζ is a (q′, Q′)–quasi-geodesic. 
Let bX be the unique geodesic ray in bX , let bY be the unique geodesic ray in bY and let 
mbX and mbY be their Morse gauges respectively. By Corollary 3.19, there is a constant 
n1 depending on k, K and mbY such that

ΦbX ⊂ Nκ(bY , n1).

For

n = k
(
mbY (q′,Q′) + n1

)
(k + K) + K

let R = R(bX , r, n, κ) as in Theorem 3.16 and choose r′ such that r′ ≥ k R + K and 
mbY (q′, Q′) is small compare to r′.

Let α ∈ aX be a (q, Q)–quasi-geodesic where mbX (q, Q) is small compared to r such 
that Φα ∈ Uκ(bY , r′). By our choice of r′, mbY (q′, Q′) is small compared to r′. Hence,

Φα|r′ ⊂ Nκ

(
bY ,mbY (q′,Q′)

)
Pick x ∈ αX |R. Then Φx ∈ Φα|r′ and we have

dX(x, bX) ≤ k(dY (Φ(x),ΦbX) + K

≤ k
(
dY (Φ(x), bY ) + n1 · κ(Φx)

)
+ K

≤ k
(
mbY (q′,Q′) + n1

)
· κ(Φx) + K

This and

κ(Φx) ≤ kκ(x) + K ≤ (k + K)κ(x)

imply that

α|R ⊂ Nκ(bX , n).
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Now, Theorem 3.16 implies that

α|r ⊂ Nκ(bX ,mbX ).

Therefore, aX ∈ Uκ(bX , r) and

(Φ�)−1Uκ(bY , r′) ⊂ Uκ(bX , r).

But Uκ(bY , r′) contains an open neighborhood of bY , therefore, bY is in the interior of 
ΦV. This finishes the proof. �
6. Examples

A tree of flats. In this section we examine κ–boundaries of a few simple examples to 
illustrate several typical properties of κ–boundaries of CAT(0) spaces. Consider the right-
angled Artin group

A = Z2 ∗ Z =
〈
g1, g2, g3

∣∣∣ [g1, g2]
〉
.

Let XA be the universal cover of the Salvetti complex of Z2 ∗Z, or simply the universal 
Salvetti complex, as in Definition A.4. We observe that XA is a tree of flats. The flats 
are associated to orbits of conjugate copies of the subgroup

〈
g1, g2 | [g1, g2]

〉
� Z2.

The oriented edges that are outside of these flats are labeled g3.
We equip XA with a metric so that each flat is isometric to the Euclidean plane E2, 

the axes of g1 and g2 intersect at a 90-degree angle and edges labeled g3 are attached at 
the lattice points. The space is simply connected and the metric on XA is CAT(0). The 
closest-point projection of any flat to any other flat is a single point. Also, since flats 
are convex subspaces, given a geodesic ray in XA, there is a well-defined itinerary of 
flats that the geodesic passes through. Choose a base-point o where an edge labeled g3
is attached to a flat and let Y0 be the flat that contains o. As before, we always assume 
a geodesic ray starts at o.

We give a characterization of the κ-contracting rays in XA. First we need the following 
lemma:

Lemma 6.1. Let b be a geodesic ray in XA. Given any ball B disjoint from b. The pro-
jection πb(B) of B to b lies inside a unique flat.

Proof. Assume for contradiction that πb(B) contains a point w in the interior of an edge 
e = (v1, v2) labeled by g3. Then b traverses e. The point w is a cut-point of XA. Let v1
be the vertex of the edge e that is in the same component as the center of the ball B. 
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Since πb(B) contains a point w, there exists a point x ∈ B where w = xb. However, we 
have

d(x,w) > d(x, v1) ≥ d(x, b). (24)

This contradicts the assumption that w is a nearest-point projection from x to b. This 
holds for every edge labeled g3. Hence πb(B) in contained a single flat. �
Lemma 6.2. A unit speed geodesic ray b in XA is κ–contracting, if and only if, there 
exists a constant c such that if b[t1, t2] is contained in a flat, then

|t1 − t2| ≤ c · κ(t1).

Proof. First we consider the “if” direction. Let {Yi} be the sequence of flats visited by 
b. By Lemma 6.1, if a ball B is disjoint from b then πb(B) is contained in some Yi. Let 
[t1, t2] be the interval of time where the image of b is in Yi.

Let x be the center of the ball B and y be any other point in B. By Lemma 6.1, 
xb = b(t) for t ∈ [t1, t2]. Therefore,

‖x‖ ≥ ‖xb‖ ≥ t1.

Thus we have

dXA
(xb, yb) ≤ |t2 − t1| ≤ c · κ(t1),

which means b is κ–contracting and we can set cb = c.
For the “only if” direction, assume b is κ-contracting with cb as a contracting constant. 

For an interval b[t1, t2] that stays in a flat, consider the ball B whose center x is at a 
distance |t2 − t1| from the point b(t1) in a perpendicular direction from the segment 
b[t1, t2] and with radius (t2 − t1). Then πb(B) = b[t1, t2]. The definition of κ-contracting 
geodesic ray dictates that

|t2 − t1| ≤ cb · κ(x) ≤ cb · κ(t1 + (t2 − t1)) = cb · κ(t2).

By Lemma 3.2,

κ(t2) ≤ c′ · κ(t1),
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for some c′ depending on κ and cb. Thus we have

|t2 − t1| ≤ cb · κ(t2) ≤ cbc′ · κ(t1). �
Proposition 6.3. If κ(t), κ′(t) are two sublinear functions such that,

lim
t→∞

κ′(t)
κ(t) = 0

Then ∂κ′XA � ∂κXA, that is to say, ∂κXA strictly contains ∂κ′XA.

Proof. The fact that ∂κ′X ⊆ ∂κX follows Proposition 4.10. We give a specific construc-
tion of a geodesic ray b that is in ∂κX but not ∂κ′X. The ray b is the concatenation of 
vertical segments vi consisting of edges labeled g3 and horizontal segments hi that are 
contained in a single flat.

Let i0 be an integer so that 2i0 ≥ κ(2i0) and let bi0 be a vertical segment of length 
2i0 . For i > i0, assume a segment bi−1 is given. Continue bi−1 along a horizontal segment 
hi of length �κ(2i)�, then along a vertical segment vi of length �2i − κ(2i)� and denote 
the resulting segment by bi. We see inductively that |bi| = 2i−1 because,

|bi| = |bi−1| + |hi| + |vi| = 2i + �κ(2i)� + �2n − κ(2i)� = 2i+1.

Also,

�κ(2i)� = |hi| ≤ κ(|bi−1|).

That is, if we let the ray b be the union of the segments bi, then b satisfies Lemma 6.2
for the sublinear function κ but not for κ′. Hence, [b] ∈ (∂κX − ∂κ′X). �

As an easy consequence, we have

Corollary 6.4. There exist two CAT(0) spaces that are not distinguishable by their 
Charney-Sultan contracting boundaries [11] but are distinguishable by their sublinear 
Morse boundaries.

Proof. We can adjust the metric on XA by changing the lengths of the edges. We say 
a flat Y is at height n, if the geodesic segment connecting o to any point in Y traverses 
through n edges labeled by g3 (in either direction). Let X√� be the space obtained from 
XA where the side lengths of unit squares in flats at height n are scaled to 

√
n. Similarly, 

let Xlog be the space obtained from XA the side lengths of unit squares in flats at height 
n is scaled to log(n).

Since 
√
n grows faster than log n, the log–boundary of X√� is a set that contains 

geodesic rays that eventually cannot travel even one edge in any flat. That is to say, 
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after a finite time, this geodesic ray will travel along the g3 direction only. The number 
of such geodesic rays is countable.

On the other hand, we see from Lemma 6.2 that the log–boundary of Xlog consists of 
geodesic rays whose projections to any flat are bounded by log of the time they enter the 
flat. A geodesic in this boundary therefore can travel in infinitely many flats. Therefore, 
the log–boundary of Xlog is an uncountable set.

Meanwhile, the Morse boundaries of both X√� and Xlog consist of geodesic rays 
that eventually travel along the g3 direction only. By the previous argument the Morse 
boundary of X√

n and the Morse boundary of Xlog are homeomorphic via the equivariant 
map of the group. �
Random walks. As mentioned in the introduction, one motivation for constructing the 
κ–Morse boundary is to study random walks on a group. (For details of construction of 
random walks on groups, see the Appendix.) In the setting of the group A acting on XA, 
Theorem A.17 tells us that, for almost every sample path in XA, the maximum amount 
of time spent on a given flat after n steps is bounded by c · logn.

Furthermore, since XA is CAT(0), by [20], almost every sample path w = {wn}
tracks a geodesic ray in XA which we denote bw. That is, there is u > 0 such that the 
distance between wn(o) and b(u · n) grows sublinearly with n. Therefore, for every flat 
Y , the projection of wn(o) to Y is eventually the same as the projection of b(u ·n) to Y , 
which is the point in Y where bw exits Y . In fact, if n is larger than a fixed multiple of 
dXA

(o, Y ), then wn(o) is closer to bw than to Y , and hence the path connecting wn(o)
to bw is disjoint from Y and projects to a point in Y .

By the above theorem, dY
(
πY (1), πY (wn)

)
grows only logarithmically. Hence, the 

time bw spends in Y is less than a multiple of the distance between Y and o. That is, bw
satisfies the condition of Lemma 6.2 and hence [bw] ∈ ∂logXA.

By [23], the visual boundary of the Salvetti complex of a right-angled Artin group 
together with the hitting measure constitutes a metric model for the Poisson boundaries 
of the group. Since almost every sample path converges to a point in ∂logXA, we have:

Corollary 6.5. Let μ be a symmetric, finitely supported probability measure on A = Z ∗Z2. 
Then ∂logXA is a metric model for the Poisson boundary (Z2 ∗ Z, μ).

In the Appendix, this is generalized to the class of all right-angled Artin groups.

Other topological properties of ∂κXA. We have shown that ∂κX is metrizable which im-
plies that it is, Hausdorff, normal and paracompact. However, ∂κX is often not compact. 
For the example given in this section, we have:

Proposition 6.6. The topological space ∂κXA is non-compact, totally disconnected and 
with no isolated points.
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Proof. Let e be any vertical edge in X, i.e. an edge labeled g3. Define W(e) to be the 
set all points b ∈ ∂κX where the geodesic ray b ∈ b traverses e. For any b ∈ W(e) and 
r large enough, Uκ(b, r) ⊂ W(e). This is because, if a ∈ Uκ(b, r), then the geodesic ray 
a ∈ a stays in a κ–neighborhood of b for distance r, namely a|r ⊂ Nκ

(
b, mb(1, 0)

)
, and 

hence has to also traverse e. Therefore, W(e) is an open set in ∂κX.
But ∂κX −W(e) is also open because it can be written as a union of sets of the form 

W(e′). For any b′ �= b in ∂κX, let e be an edge traversed by b and not by b′. Then 
b ∈ W(e) and b′ ∈ ∂κX −W(e) which are both open. Thus, ∂κX is totally disconnected.

All sets W(e) are homeomorphic to each other and contain more than one point in 
∂κX. Let {ei} be the set of vertical segments along b and let bi ∈ W(ei) be a point not 
equal to b. Since ∩iW(ei) = b, we have bi → b. That is, ∂κX has no isolated points.

To see that ∂κX is not compact, consider a sequence of geodesics {bj} where each 
bj leaves the flat Y0 at coordinate (j, 0) and then follows the g3–direction indefinitely. 
All geodesic rays bj are κ–contracting. But, the point-wise limit of this sequence is the 
geodesic that lies in Y0 which is not contracting for any κ. In fact, bj has no limit point 
in ∂κX because if bj → b then infinitely many bj have to be contained W(e) for some e
along b. But this does not hold for any e. Therefore, ∂κX is not compact. �

However, the boundary does not always have to be totally disconnected. In [2], Behr-
stock constructed a family of right-angled Coxeter groups where the Morse boundary 
is not totally disconnected. And, since the Morse boundary is a topological subspace of 
∂κX (see Lemma 4.10), the same holds for ∂κX.

Appendix A. Poisson boundaries of right-angled Artin groups

Yulan Qing1 and Giulio Tiozzo2

As an application of sublinearly Morse boundaries, we show that when κ =
√
t log t, 

the κ–Morse boundary of the universal Salvetti complex is a model for the Poisson 
boundary of a right-angled Artin group. This establishes Theorem F in the introduction.

Let Γ be a finite graph, and let A(Γ) be the right-angled Artin group associated to Γ, 
which is defined by the presentation

A(Γ) :=
〈
v is a vertex in Γ | [v, w] = 1, (v, w) is an edge in Γ

〉
.

That is to say, there is an infinite order generator for each vertex, and a pair of generators 
commute if and only if there is an edge between the two corresponding vertices in Γ.

Each right-angled Artin group is associated with a cube complex known as its Salvetti 
complex, and its universal cover X(Γ) is a proper CAT(0) space on which A(Γ) acts 
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cocompactly. We call X(Γ) the universal Salvetti complex. The main theorem of this 
appendix is the following.

Theorem A.1. Let μ be a finitely supported, generating measure on an irreducible right-
angled Artin group A(Γ). Then the 

√
t log t–Morse boundary of X(Γ) is a QI-invariant 

topological model for the Poisson boundary of (A(Γ), μ).

Let us now recall some background material and fundamental definitions.

Random walks and the Poisson boundary. Let G be a countable group of isometries of 
a metric space X, and let μ be a probability measure on G. A measure μ is generating
if the semigroup generated by the support of μ equals G. We define the random walk
associated to (G, μ) as the stochastic process

wn := g1 . . . gn

where (gn)n≥1 is a sequence of G-valued i.i.d. random variables, each with distribution 
μ. Let us fix a base point x ∈ X. The sequence (wnx)n≥1 is called a sample path for the 
random walk.

In most interesting situations, almost every sample path converges to a point in a 
suitable boundary ∂X; in that case, we define the hitting measure ν on ∂X as

ν(A) := P
(

lim
n→∞

wnx ∈ A
)
.

A function f : G → R is μ-harmonic if it satisfies a discrete version of the mean 
value property; namely, f(g) =

∑
h∈G μ(h)f(gh) for any g ∈ G. We denote the 

space of bounded, μ-harmonic functions as H∞(G, μ). Now, the Poisson transform
Φ : L∞(∂X, ν) → H∞(G, μ) is defined as

Φ(f)(g) :=
∫
∂X

f(g(x)) dν(x)

and the space (∂X, ν) is the Poisson boundary if Φ is an isomorphism.
That is, the Poisson boundary is the natural space where all bounded harmonic func-

tions can be represented. It is well-defined as a measurable G-space. For groups acting 
on CAT(0) metric spaces, an identification of the Poisson boundary is given as follows.

Theorem A.2 ([20], [23]). Let G be a countable group of isometries of a CAT(0) proper 
metric space such that its action has bounded exponential growth, and let μ be a nonele-
mentary measure on G with finite first moment. Then: if the drift is zero, the Poisson 
boundary of (G, μ) is trivial; if the drift is positive, almost every sample path converges 
to the visual boundary of X, and the visual boundary with the hitting measure is a model 
for the Poisson boundary of (G, μ).
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For more general measures, convergence to the visual boundary has been recently 
proven in [13]. In this appendix, we prove:

Theorem A.3. Let G = A(Γ) be an irreducible right-angled Artin group, let μ be a finitely 
supported, generating measure on G, and let ν be the hitting measure for the correspond-
ing random walk. Then the κ–Morse boundary with κ(t) =

√
t log t is a G-invariant 

subset of the visual boundary of full ν-measure.

Theorem A.3 and Theorem A.2 immediately imply Theorem A.1, which is the same 
as Theorem F in the introduction.

Background on cube complexes. For all basic definitions related to right-angled Artin 
groups and the associated CAT(0) cube complex X(Γ), we follow [10] and [18].

Definition A.4. Associated to a right-angled Artin group A(Γ) is an infinite and locally 
finite cube complex called the Salvetti complex, constructed as follows: associated to 
each vertex of A(Γ) is a simple closed loop of unit length. If two vertices form an edge in 
A(Γ) then attach to the two associated loops a square torus generated by the two loops 
intersecting at a right angle. More generally, given a complete subgraph on k vertices, 
consider a unit k-torus generated by k loops intersecting at right angles. The universal 
Salvetti complex associated to A(Γ), denoted as X(Γ), is then the universal cover of this 
tori-complex. Notice that the 0 and 1-skeleta of X(Γ) are isomorphic, respectively, to 
the 0 and 1-skeleton of the Cayley graph of A(Γ) with this specific presentation.

The universal Salvetti complex X(Γ) is a CAT(0) cube complex [17], which we discuss 
now. A cube complex is a polyhedral complex in which the cells are Euclidean cubes of 
side length one. The attaching maps are isometries identifying the faces of a given cube 
with cubes of lower dimension and the intersection of two cubes is a common face of 
each. Cubes of dimension 0, 1 and 2 are also referred to as vertices, edges and squares. 
A cube complex is finite dimensional if there is an upper bound on the dimension of its 
cubes. Finally, a CAT(0) cube complex is a simply connected cube complex in which the 
link of each vertex is a flag simplicial complex.

Hyperplanes and contact graph. In a CAT(0) cube complex, consider the equivalence 
relation on the set of mid-cubes generated by the rule that two mid-cubes are related 
if they share a face. Then a hyperplane H is defined as the union of the mid-cubes in 
a single equivalence class. Every hyperplane H is a geodesic subspace of X(Γ) which 
separates X(Γ) into two components. We shall refer to each of these two components 
as a half-space, and denote them as {H+, H−}. Two hyperplanes provide four possible 
half-space intersections; the hyperplanes intersect if and only if each of these four half-
space intersections is non-empty. In contrast, we say two convex subcomplexes F1, F2
are parallel (and we denote it as F1 ∼ F2) if, given any other hyperplane H ′,

F1 ∩H ′ �= ∅ ⇔ F2 ∩H ′ �= ∅.



42 Y. Qing, K. Rafi / Advances in Mathematics 404 (2022) 108442
We say a hyperplane H separates two hyperplanes H1, H2 if, given any pair of points 
x ∈ H1, y ∈ H2, all geodesics connecting x and y have non-empty intersection with H. 
Lastly, we say a (combinatorial) geodesic crosses a hyperplane H if there exists two 
consecutive vertices on the geodesic such that one belongs to H+ and the other belongs 
to H−.

Given a finite graph Γ, a join J ⊂ Γ is an induced subgraph whose vertices can be 
partitioned into two sets A, B such that all edges of the form {(a, b) : a ∈ A, b ∈ B}
are edges of J . Recall a right-angled Artin group A(Γ) is irreducible if Γ itself is not 
a join. Let J denote the set of all maximal joins of Γ, where maximality is defined by 
containment.

Remark A.5. By definition, every join between a vertex and its link is contained in a 
maximal join.

Definition A.6. The contact graph C(X) of a CAT(0) cube complex X is a graph whose 
vertex set is the set of hyperplanes of X. Moreover, two vertices are adjacent if the 
corresponding hyperplanes H1, H2 satisfy one of the following:

• either H1 intersects H2 nontrivially; or
• H1 and H2 are not separated by a third hyperplane.

It is known that the contact graph is always hyperbolic (in fact, a quasi-tree [17]).

Gates and projections. Given a point x and a convex subset Z of X, the nearest-point 
projection of x to Z exists and is unique by CAT(0) geometry. We denote it as xZ .

Definition A.7. If K ⊂ X is convex, then for all x ∈ X(0), there exists a unique closest 
0-cube gK(x) ∈ K, called the gate of x in K.

The gate is characterized by the property that any hyperplane H separates gK(x)
from x if and only if H separates x from K.

The convexity of K allows us to extend the map x → gK(x) to a projection gK : X →
K, which is a cubical map defined as follows. Let c be a d-dimensional cube of X
and let H1, H2..., Hd be the collection of (pairwise-crossing) hyperplanes which cross 
c. Suppose that these are labeled so that H1, H2..., Hs cross K, for some 0 ≤ s ≤ d, 
and that Hs+1, Hs+2..., Hd do not cross K. Then the 0-cubes of c map by gK to the 0-
cubes of a uniquely determined s-dimensional cube gK(c) of K in which the hyperplanes 
H1, H2..., Hs intersect, and there is a cubical collapsing map c � [−1, 1]d → [−1, 1]s �
gK(c) extending the gate map on the 0-skeleton.

Definition A.8 (Projection to the contact graph). Let K be a convex subcomplex of X. 
Given a hyperplane H, let Nκ(H) denote its carrier, i.e., the union of all closed cubes 
intersecting H. For each 0-cube k ∈ K, let {Hi}i∈I be the collection of hyperplanes such 
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that k ∈ Nκ(Hi), and define ρK : K → 2C(K) by setting ρK(k) = {Hi ∩K}i∈I . Let us 
now define the projection map πK : X → 2C(K) by setting πK := ρK ◦ gK , where gK(x)
is the gate of x in K.

The following version of the bounded geodesic image theorem is inspired by [4, 
Proposition 4.2]. Given a set S ⊆ C(X), we use the notation B1(S) to denote the 
1-neighborhood of S.

Lemma A.9 (Bounded geodesic image theorem). Let X = X(Γ) be a universal Salvetti 
complex, let J be a join and let K ⊆ X(J) be a sub-Salvetti complex. Then if a path γ
in X satisfies πX(γ) ∩B1(πX(J)) = ∅, we have diam πK(γ) ≤ 1.

Proof. Let x, y be two points on γ. If πK(x) �= πK(y), then there exists a hyperplane 
H in K which separates gK(x) and gK(y). Let H ′ be a hyperplane in X such that 
H = H ′ ∩ K. Then by convexity H also separates x and y, hence its projection to 
the contact graph C(X) intersects the projection of γ. Since H also intersects J , this 
contradicts the condition πX(γ) ∩B1(πX(J)) = ∅. �

We also recall the notion of factor system from [4].

Definition A.10 ([4], Definition 8.1). (Factor system). Let X = X(Γ). A set of sub-
complexes of X, denoted F, which satisfies the following is called a factor system in 
X:

(1) X ∈ F.
(2) Each F ∈ F is a nonempty convex sub-complex of X.
(3) There exists δ ≥ 1 such that for all x ∈ X(0), at most δ elements of F contain x.
(4) Every nontrivial convex sub-complex parallel to a combinatorial hyperplane of X is 

in F.
(5) There exists ξ ≥ 0 such that for all F, F ′ ∈ F, either gF (F ′) ∈ F or diam(gF (F ′)) ≤ ξ.

Associated with a factor F ∈ F is a factored contact graph ĈF defined as the contact 
graph of F with each subgraph that is the contact graph of some smaller element of F
coned off.

Lemma A.11 ([4], Lemmas 2.6 and 8.19). Let F, F ′ be two convex subcomplexes. Then:

i) gF (F ′) and gF ′(F ) are parallel subcomplexes.
ii) If F is not parallel to a subcomplex of F ′, then

diamĈF (πF (F ′)) ≤ ξ + 2.
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Let us remark that if F and F ′ are isometric, then ii) is true under the (seemingly 
weaker) assumption that F is not parallel to F ′.

Excursion geodesics. It follows from Theorem A.2 that almost every sample path (wn) of 
a random walk on an irreducible right-angled Artin group converges to exactly one point 
ξ in the visual boundary, and there is a unique CAT(0) geodesic ray γ which connects 
the base-point with ξ. In this case, we say that the sample path tracks the geodesic ray 
γ. To build the connection between a sample path and the associated geodesic ray, we 
characterize geodesics by bounding their excursions.

We say a geodesic ray γ = {g0, g1, g2, . . . , gn, . . . } with respect to the word metric in 
A(Γ) is a κ-excursion geodesic if there exists a function κ and a constant C such that 
its projection to every maximal join J subcomplex is bounded above by Cκ(t). That is, 
we have:

sup
J

ds(J)(gs(J)(g0), gs(J)(gn)) ≤ Cκ(‖gn‖) (25)

where the supremum is taken over all maximal join subcomplexes J ⊆ X(Γ). The main 
result of this section is the following.

Proposition A.12. For any sublinear function κ, a κ–excursion geodesic is also a 
κ–contracting geodesic.

In order to discuss the proof of this Proposition, let us recall that two hyperplanes 
H1, H2 are strongly separated if there does not exist a hyperplane H that intersects both 
H1 and H2. Given two hyperplanes H1 and H2, the bridge B between them is the union 
of all geodesic segments of minimal length between H1 and H2. We need the following 
properties about hyperplanes in the Salvetti complex:

Lemma A.13 (Properties of Strongly Separated Hyperplanes). Let u, v, w be vertices of Γ, 
and let Hu, Hv, Hw be the associated hyperplanes that are dual to edges incident to the 
base-point of X(Γ). Let Lv denote the stabilizer of Hv, i.e. the group generated by the 
link lk(v).

1) Let H1 = g1Hv and H2 = g2Hw. Then,

(a) H1 intersects H2 ⇔ v, w commute and g−1
1 g2 ∈ LvLw.

(b) There exists H3 intersecting both H1 and H2 ⇔ ∃u ∈ st(v) ∩ st(w) such that 
g−1
1 g2 ∈ LvLuLw.

2) Let H1, H2 be strongly separated hyperplanes in a universal Salvetti complex. The 
bridge B between H1 and H2 consists of a single geodesic from H1 to H2.

3) There is a universal constant C > 1, depending only on the dimension of X(Γ), such 
that for any x ∈ H1 and y ∈ H2,
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d(x, y) ≥ 1
C

(d(x,B) + d(y,B)) − d(H1, H2) − 4.

Proof. 1) and 2) are proven in ([3], Lemma 2.2 and Lemma 3.1). 3) is proven for word-
metric geodesics in ([3], Lemma 2.3). However, for every CAT(0) geodesic, there exists 
a word-metric geodesic that lies in a 1-neighborhood of it and is a (2, 0)-quasi-geodesic 
in the CAT(0) metric. Combined with the fact that a bridge is both a CAT(0) geodesic 
and a word-metric geodesic, 3) holds with a larger multiplicative constant. �
Lemma A.14. Let γ be a geodesic ray. Let {Si} denote a maximal sequence of strongly 
separated hyperplanes crossed by γ. Then there exists a sequence of joins, denoted {Jk}, 
traveled by γ such that for all i, if Si ∈ Jk, then Si+1 ∈

⋃
l=1,2,3 Jk+l.

Proof. Consider the sequence (H1, H2, H3, . . . ) of hyperplanes crossed by γ. Let Hk be 
the first hyperplane that is strongly separated from H1 = Hv. By Lemma A.13(1), 
suppose gk−1Hw = Hk−1, then gk−1 lies in LvLuLw where u ∈ st(v) ∩st(w). Since Hw is 
the next hyperplane, then gk lies in LvLuLwsw. By Remark A.5, each link is contained 
in a join, thus there exists a sequence of joins traveled consecutively by γ such that if 
Hi ∈ Ji then Hk ∈ Ji+2. Now repeat the process between Hk and the first hyperplane 
that is strongly separated from Hk, say Hk′ . It is possible that in this case the three 
joins connecting Hk and Hk′ do not overlap with the joins that connect H1 and Hk. In 
that case, consider Hk to be the wall that is in both joins. Therefore from H1 to Hk′ the 
ray γ crosses 6 joins, satisfying the claim that Si+1 ∈

⋃
l=1,2,3 Jk+l. �

Corollary A.15. Consider the sequence of joins produced in Lemma A.14 and denote it 
{Ji}. Then the projection of Ji to Ji+5 is a point.

Proof. By Lemma A.14, any geodesic connecting Ji to its projection onto Ji+5 passes 
through at least 2 strongly separated hyperplanes. By Lemma A.11(i), the projections of a 
pair of strongly separated hyperplanes to one another are parallel. But strong separability 
implies that both projections consist of a single point. Therefore, the projection of Ji to 
Ji+5 is a point. �
Lemma A.16 (An excursion geodesic travels close to bridges). Fix a sublinear function κ, 
and let γ be a κ-excursion geodesic ray with itinerary {Ji} as produced in Lemma A.14. 
Let {Si} be the sequence of strongly separated hyperplanes in Corollary A.14, and let Bi,j

be the bridge between Si and Sj. Let bi(j) denote the intersection point of Bi,j with Si. 
Also let xi be any point in the intersection γ ∩ Si. Then, if |i − j| = 1 we have

d(xi, bi(j)) ≤ Cκ(‖xi‖).

Proof. By Lemma A.13(2), the bridge Bi,i+1 is a geodesic segment. By definition the 
length of a bridge is shorter than the distance between any other pair of points in Si

and Si+1. Since {Ji} is a κ(t)-itinerary, the lengths of bridges are bounded above by the 
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lengths d(xi, xi+1), which is bounded by a constant multiple of κ(t). Let that constant 
be C. Since γ is a κ(t)-excursion geodesic, d(xi, xi+1) ≤ κ(‖xi‖). By Lemma A.13(3),

1
C

(d(xi, bi(i + 1)) + d(xi+1, bi+1(i)) − |Bi,i+1| − 4 ≤ d(xi, xi+1) ≤ κ(‖xi‖)

1
C

(d(xi, bi(i + 1)) + d(xi+1, bi+1(i)) ≤ |Bi,i+1| + 4 + κ(‖xi‖)

≤ Cκ(‖xi‖)

Therefore d(xi, bi(i + 1)) and d(xi+1, bi+1(i)) are both bounded by Cκ(‖xi‖). �
Now we are ready to prove that the set of all κ-excursion geodesics is a subset of the 

κ–Morse boundary. We first replace an excursion geodesic with a geodesic in the CAT(0)
metric that enters and leaves each maximal join at the same pair of points.

Proof of Proposition A.12. Let γ be a κ(t)–excursion geodesic and let {Ji} be the asso-
ciated itinerary of joins produced in Lemma A.14. Let x be in a maximal join Ji with 
x /∈ γ, let

A :=
5⋃

k=0

Ji+k,

and A := A ∪Ji−1∪Ji+6. Consider now a metric ball Σ := {y ∈ X(Γ) : d(x, y) < d(x, γ)}
which is disjoint from γ. Our goal is to prove that for any y ∈ Σ we have d(xγ , yγ) ≤
Cκ(‖x‖), where xγ denotes the closest-point projection of the point x to γ.

Let y ∈ Σ. If y ∈ A, then there exists a constant C1 such that

d(xγ , yγ) ≤ C1κ(‖x‖).

Otherwise, consider y in Ji+k, k ≥ 6. There exists points p ∈ Ji+k and closest to x such 
that

d(x, y) = d(x, p) + d(p, y). (26)

That is to say p ∈ gJi+6(Ji). By Corollary A.15, p is unique and therefore p =
Bi+6(i + 5), thus by Lemma A.16, there exists constant C2 such that

d(p, γ) ≤ C2κ(‖x‖).

By way of contradiction, suppose d(p, y) ≥ d(p, γ). Then

d(x, y) = d(x, p) + d(p, y) by eq. (26)

≥ d(x, p) + d(p, γ)

≥ d(x, γ).
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This is contrary to our assumption that y ∈ Σ. Therefore, d(p, y) < d(p, γ), hence 
d(p, y) < C2κ(‖x‖). By the Lipschitz property of CAT(0) projections, we have

d(pγ , yγ) ≤ C2κ(‖x‖).

Since d(xγ , pγ) ≤ C1κ(‖x‖), then

d(xγ , yγ) ≤ d(xγ , pγ) + d(pγ , yγ) ≤ (C1 + C2)κ(‖x‖). �
Excursion of random geodesics. To show that the κ–Morse boundary has full measure, 
we need to control the excursion of the random walk in each sub-join of the Salvetti 
complex. We will use the following variation of the main theorem in [29] (we thank Sam 
Taylor for suggesting the argument).

Theorem A.17. Let μ be a finitely supported, generating probability measure on an irre-
ducible right-angled Artin group A(Γ). Then for any k > 0 there exists C > 0 such that 
for all n we have

P

(
sup
J

ds(J)(1, wn) ≥ C log n
)

≤ Cn−k,

where the supremum is taken over all join subcomplexes of X(Γ).
As a consequence, for almost every sample path there exists C > 0 such that for all n

sup
J

ds(J)(1, wn) ≤ C log n.

Proof. The idea of the proof is that in order to make progress in s(J), the sample path 
must project close to the projection of J in the contact graph C(X). However, linear 
progress with exponential decay implies that the sample path can stay close to the 
projection of J only for a time of order logn, which completes the proof.

Let us see the details. By linear progress with exponential decay [21, Theorem 1.2], 
there exists L > 0 and C1 such that

P (dC(X)(1, wn) ≤ Ln) ≤ Ce−n/C

for all n, so for any A > 0 and n ≥ e2/LA we have

P (dC(X)(1, wA logn) ≤ 2) ≤ Cn−A/C . (27)

By the distance formula [4, Theorem 9.1], for any B > 0 there exist C2 such that for 
any join J

ds(J)(x, y) ≤ C2
∑

{dC(K)(x, y)}B + C2

K⊆J
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where {x}B = x if x ≥ B, and {x}B = 0 otherwise. In particular, by Lemma A.9 there 
exists C2 such that if a path γ = [x, y] projects far from J in C(X) then

ds(J)(x, y) ≤ C2.

Consider now the path of vertices (wi)i≤n in X(Γ), and suppose that for a join J we 
have ds(J)(1, wn) ≥ C log n. Let

i1 := min{0 ≤ i ≤ n : dC(X)(wi, J) ≤ 1},

i2 := max{0 ≤ i ≤ n : dC(X)(wi, J) ≤ 1},

and

D := max{dX(Γ)(1, g) : g ∈ supp μ}.

Then

C logn ≤ ds(J)(1, wn) ≤ ds(J)(1, wi1)+ds(J)(wi1 , wi2)+ds(J)(wi2 , wn) ≤ D(i2−i1)+2C2

hence, for n large enough,

|i1 − i2| ≥
C logn

2D .

Hence

P (∃J : ds(J)(1, wn) ≥ C log n)

≤ P

(
∃i1 ≤ i2 ≤ n, i2 − i1 ≥ C

2D log n : dC(X)(wi1 , wi2) ≤ 2
)

and by (27) this is bounded above by

≤ n2 · C1n
− C

2DC1

which tends to 0 for n → ∞ as long as C > 4DC1.
The second claim follows immediately from the first one for k = 2 by Borel-

Cantelli. �
Sublinear deviation between geodesics and sample paths. What remains is to understand 
the Hausdorff distance between a sample path and the geodesic ray that it is tracking. 
We first recall the following result:
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Theorem A.18 ([28], Theorem 5.2). Let S be a connected, orientable surface of finite 
type, with empty boundary and complexity at least 2. Let M(S) be its mapping class 
group and let {wn} be a random walk on M(S) driven by a finitely supported measure 
μ. Then for any k ≥ 1 there exists a constant C such that

P
(
sup dHaus({wi}i≤n, γ(wn)) ≥ C

√
n log n

)
≤ Cn−k

where the supremum is taken over all geodesics in a given word metric and hierarchy 
paths γ(wn) from 1 to wn.

It turns out that the proof in [28] uses all ingredients that are known for right-angled 
Artin groups, namely the bounded geodesic image theorem, the distance formula, and 
quadratic divergence (where the 

√
n function comes from). Hence the same proof as in 

[28] yields:

Theorem A.19. Let G be an irreducible right-angled Artin group and let {wn} be a random 
walk on G driven by a finitely supported, generating measure μ. Then for any k ≥ 1 there 
exists a constant C such that

P
(
sup dHaus

(
{wi}i≤n, γ(wn)

)
≥ C

√
n logn

)
≤ Cn−k

where the supremum is taken over all geodesics in a given word metric from 1 to wn.

As a consequence, we obtain the following tracking estimate.

Proposition A.20. Let μ be a finitely supported, generating measure on an irreducible 
right-angled Artin group G = A(Γ), with universal Salvetti complex X = X(Γ). Then 
there exists � > 0 such that for almost every sample path (wn) there exists a CAT(0)
geodesic ray γ in X starting at the base-point such that

lim sup
n→∞

dX(wn, γ(�n))√
n log n

< +∞.

Proof. Since G = A(Γ) is non-amenable and its action on X is cocompact, there exists 
� > 0 such that for almost every sample path

lim
n→∞

dX(1, wn)
n

= �. (28)

Now, by Theorem A.19, there exists C > 0 such that for any n

P

(
sup dX(wi, γn) ≥ C

√
n logn

)
≤ Cn−2
i≤n
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where γn is the CAT(0) geodesic joining 1 and wn. Hence, by Borel-Cantelli for almost 
every sample path there exists a constant C ′ such that

sup
i≤n

dX(wi, γn) ≤ C ′√n log n (29)

for any n. Now, let nk := ekn and consider the triangle with vertices {wnk−1 , 1, wnk
}. 

For large n and any k ≥ 1, we have dX(wnk−1 , γnk
) ≤ C ′√nk lognk by (29) and 

dX(1, wnk−1) ≥ �
2nk−1 by (28), then by comparison with a euclidean triangle,

dX(γnk−1(�n), γnk
(�n)) � �n

dX(wnk−1 , γnk
)

dX(1, wnk−1)
�

√
n logn

√
ke−k/2.

Hence

dX(wn, γ(�n)) �
∞∑
k=1

dX(γnk−1(�n), γnk
(�n)) �

√
n log n

which proves the claim. �
Proof of Theorem A.3 and Theorem F. Recall that almost every sample path (wn)
converges to a point ξ in the visual boundary: let γ be the infinite CAT(0) geodesic 
connecting the base-point to ξ, and let γ′ = {g0, g1, . . . } be a combinatorial geodesic in 
X(Γ) which lies at distance at most 1 from γ.

By Theorem A.17, for almost every sample path there exists C1 > 0 such that

ds(J)(1, wn) ≤ C1 log n,

for any join J . Moreover, by Proposition A.20, for almost every sample path and any J ,

ds(J)(γ(�n), wn) ≤ dX(Γ)(γ(�n), wn) ≤ C2
√

n logn

hence, since gn lies within distance 1 of γ(n),

ds(J)(1, gn) ≤ C1 log(n/�) + C2
√

(n/�) log(n/�) ≤ C3
√

n logn.

Thus, the geodesic γ′ is a κ-excursion geodesic with κ =
√
t log t, hence it is also a 

κ-contracting geodesic. This proves Theorem A.3, hence also Theorem F.
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