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UNIFORM GROWTH RATE

KASRA RAFI AND JING TAO

(Communicated by Kevin Whyte)

Abstract. In an evolutionary system in which the rules of mutation are local
in nature, the number of possible outcomes after m mutations is an exponential
function of m but with a rate that depends only on the set of rules and not
the size of the original object. We apply this principle to find a uniform upper
bound for the growth rate of certain groups including the mapping class group.
We also find a uniform upper bound for the growth rate of the number of
homotopy classes of triangulations of an oriented surface that can be obtained
from a given triangulation using m diagonal flips.

1. Introduction

Let G be a group and S be a generating set for G. We denote the word length
in G associated to S with ‖�‖S . Recall that the growth rate of G (relative to S) is
defined to be

hG = lim
R→∞

log #BR(G)

R
, where BR(G) =

{
g ∈ G

∣∣∣ ‖g‖S ≤ R
}
.

At his 60th birthday conference, Bill Thurston mentioned that the mapping
class group has a growth rate that is independent of its genus. Namely, consider
the following set of curves on a surface Σ = Σg,p of genus g with p punctures:

Let S be the set of Dehn (or half) twists around these curves. This set S generates
MCG(Σ), the mapping class group of Σ [Lic64, FM12, Art47, Bir74]. (Note that
S is a combination of the Lickorish generators of the mapping class group of a
closed surface and the standard generators of a braid group.) We will refer to S
as the set of extended Lickorish generators for MCG(Σ). Then, the growth rate of
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1416 KASRA RAFI AND JING TAO

MCG(Σ) equipped with the word metric associated to S has an upper bound that
is independent of the topology of Σ. This, Thurston asserted, is true since most
pairs of elements in S commute.

Note that, in fact, the number of elements in S that do not commute with a
given element in S is uniformly bounded. We show that this is enough to obtain
the uniform growth rate in general.

Theorem A. Given any c0 let S be a generating set for a group G such that, for
every s ∈ S, the number of elements of S that do not commute with s is bounded
by c0. Then hG ≤ log(2c0 + 2) + 1.

Since each curve in the extended Lickorish generators intersects at most 3 other
curves, we obtain:

Corollary B. The growth rate of MCG(Σ) relative to the extended Lickorish gen-
erators is bounded by log 8 + 1.

Uniform growth rate can also be shown regarding groups Aut(Fn), Out(Fn),
GLn(Z), and similar groups if the generating set is chosen such that the number of
generators that do not commute with a given generator is uniformly bounded. In
fact, these groups have natural generating sets with this property. For example, in
the case of Aut(Fn), let Fn be the free group with basis {a1, . . . , an}, and consider
the following three types of automorphisms of Fn:

(1) Inversion: For 1 ≤ i ≤ n, Ii(ai) = ai and fixes all other aj .
(2) Transposition: For 1 ≤ i ≤ n−1, Pi(ai) = ai+1 and Pi(ai+1) = ai and fixes

all other aj .
(3) Multiplication: For 1 ≤ i ≤ n− 1, Mi(ai) = aiai+1 and fixes all other aj .

The collection of inversions, transpositions, and multiplications generate Aut(Fn)
[MKS66,LS77] and is called the set of local Nielsen generators. For each s ∈ S, the
number of elements that do not commute with s is at most 7, and we obtain:

Corollary C. The growth rate of Aut(Fn) relative to local Nielsen generators is
bounded by log 16 + 1.

1.1. Evolving structures. Another context in which to apply this philosophy is
the setting of evolving structures. We follow the footsteps of the work of Sleator-
Tarjan-Thurston [STT92] where they showed that if a graph is allowed to evolve
using a set of rules that change the graph locally, then the growth rate of the
number of possible outcomes after R mutations is bounded by a constant depending
on the rules of evolution and not the size of the graph. This was used in [STT92]
to estimate the diameter of the space of plane triangulations equipped with the
diagonal flip metric and in [RT13] to estimate the diameter of the space of cubic
graphs equipped with the Whitehead move metric. Similar to their work, one can
also consider the evolution of labeled graphs. Generalizing the results in [STT92]
slightly, we prove:

Theorem D. Let G be any group and Γ be a G–labeled trivalent graph (see Section
3 for definition). Let BR(Γ) be the set of G–labeled graphs that are obtained from
Γ by at most R splits. Then

lim
R→∞

log#BR(Γ)

R
≤ 3 log 4.
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UNIFORM GROWTH RATE 1417

That is, the growth rate of BR(Γ) is independent of the size and shape of the starting
graph Γ and of the group G.

As an application, we can prove a combinatorial version of Corollary B. Namely,
let Tn(Σ) be the space of homotopy classes of triangulations of the surface Σ with
n vertices.

Theorem E. For T ∈ Tn(Σ), let BR(T ) be the set of triangulations in Tn(Σ) that
are obtained from T using R diagonal flips. Then

lim
R→∞

log#BR(T )

R
≤ 3 log 4

for every surface Σ and any number of vertices n.

Note that, even though Theorem E is a direct analogue of Corollary B, it does
not follow from it. This is because the quotient of Tn(Σ) by MCG(Σ) has a size
that goes to infinity as the number of vertices n approaches infinity.

1.2. Remarks and references. Our Theorem A follows immediately from an up-
per bound on the growth rate of a right-angled Artin group A(Θ) with defining
graph Θ, in terms of the maximum degree of the complementary graph Θ (Theo-
rem 2.1). Other results relating the growth rate of A(Θ) to the shape of Θ have
been obtained in the past. For instance, it was shown in [Sco07] that the growth
series of A(Θ) can be computed in terms of the clique polynomial of Θ. Similar
results can be found in [AP14] and [McM14]. However, the degree of Θ cannot be
recovered from the coefficients of the clique polynomial of Θ, so these results are
independent from ours.

Our proof of Theorem 2.1 is related to normal forms for elements of a right-angled
Artin group. A normal form for a word representing an element in A(Θ) is obtained
by shuffling commuting elements and removing inverse pairs of generators of A(Θ)
whenever possible ([HM95]). By fixing an ordering of V (Θ), then every element
of A(Θ) admits a unique normal form, obtained by additionally shuffling lower-
order letters to lower positions whenever possible. In our proof of Theorem 2.1,
we construct a canonical representative for a given word, obtained similarly by
shuffling lower-order letters to lower positions. However, we do not need to cancel
inverse pairs, so the canonical representative of a word may not be in normal form.

2. Uniform growth rates

2.1. Preliminaries. Let G be a finitely generated group. By convention, the in-
verse of an element g ∈ G will be represented by g; and for any subset S ⊂ G,
let S = {s : s ∈ S}. A word in S ∪ S is a sequence w = [s1, . . . , sR], where
si ∈ S ∪ S; R is the length of w. We allow the empty word whose length is 0. A
word w = [s1, . . . , sR] represents an element g ∈ G if g = s1 · · · sR. (The empty
word represents the identity element.) By a generating set for G we will mean a
finite set S ⊂ G \ {1} such that every element g ∈ G is represented by a word in
S ∪ S. The word length ‖g‖S of g relative to a generating set S is the length of

the shortest word in S ∪S representing g. For any R, BR(G) is the set of elements
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1418 KASRA RAFI AND JING TAO

of G with word length at most R. The growth rate (also called the entropy) of G
relative to S is

hG = lim
R→∞

log#BR(G)

R
,

where the above limit exists by sub-additivity.
We remark that the growth rate of G depends on the generating set, but pos-

itivity of the growth rate does not. The growth rate of Fn relative to a basis is
log(2n−1). If G contains a subgroup isomorphic to F2, then hG is strictly positive.
See [GdlH97] and the references within for more details.

2.2. RAAGs. A graph is a 1-dimensional CW complex. It is simple if there are
no self-loops or double edges.

Let Θ be a finite simple graph. Let V (Θ) and E(Θ) be the set of vertices
and edges of Θ. An element of E(Θ) will be denoted by vw, where v and w
are the vertices of the edge. The complementary graph of Θ is the graph Θ with
V (Θ) = V (Θ), but two vertices span an edge in Θ if and only if they do not in Θ.

The right-angled Artin group or RAAG associated to Θ is the group A(Θ) with
the presentation:

A(Θ) = 〈sv for v ∈ V (Θ): [sv, sw] = 1 for vw ∈ E(Θ)〉 .
The collection S = {sv} will be called the standard generating set of A(Θ). We will
often ignore the distinction between a vertex v and the generator sv.

Theorem 2.1. If the valence of every vertex in Θ is bounded above by a constant
c0, then the growth rate of A(Θ) relative to the standard generating set S is bounded
by log(2c0 + 2) + 1.

From Theorem 2.1, we derive Theorem A as a corollary.

Corollary 2.2. Let SG be a generating set for a group G such that for every s ∈ SG,
the number of elements of SG that do not commute with s is bounded by c0. Then
hG ≤ log(2c0 + 2) + 1.

Proof. Let Θ be the graph with vertex set SG and ss′ ∈ E(Θ) if and only if
[s, s′] = 1 in G. The natural map from A(Θ) to G taking the standard generating
set S to SG extends to a surjective homomorphism, and the hypothesis on SG

implies the valence of every vertex in Θ is bounded by c0. All together, we obtain
hG ≤ hA(Θ) ≤ log(2c0 + 2) + 1. �

The rest of the section is dedicated to proving Theorem 2.1.
Given a word w = [s1, . . . , sR] in S ∪ S, the j–th letter of w is w(j) = sj . A

word w′ = [t1, . . . , tR] is a reordering of w if t1 · · · tR = s1 · · · sR and there is a
permutation σ such that tj = sσ(j). We say the letter sk in w is ready for position
i, i ≤ k, if sk commutes with every sj , for i ≤ j ≤ k.

At every vertex v of Θ, label the half-edges at v from 1 to dv, where dv ≤ c0 is
the valence of v. Let n be the cardinality of V (Θ). Fix a labeling L0 : V (Θ) → N

whose image is {1, . . . , n}.
Fix w0 = [s1, . . . , sR]. We will inductively construct a sequence w1, . . . , wR of

words that reorders w0, in conjunction with a sequence L1, . . . , LR of labeling of
V (Θ). The final word wR will be called the canonical representative of g = s1 · · · sR
induced by w0. (WR depends on W0.) Along this process, we produce an encoding
of the canonical representative by a sequence of integers �1, . . . , �R.
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UNIFORM GROWTH RATE 1419

Suppose for i ≥ 0, wi = [u1, . . . , ui, ti+1, . . . , tR], a labeling Li of V (Θ), and a
sequence �1, . . . , �i are given. Among {ti+1, . . . , tR}, let U be the subset of letters
that are ready for position i + 1. Pick t ∈ U such that Li(t) is minimal among all
elements of U . Set

wi+1 =
[
u1, . . . , ui, t, ti+1, . . . , t̂, . . . , tR

]
,

and ui+1 = t. If t ∈ S, then let �i+1 = Li(t); if t ∈ S, then let �i+1 = −Li(t). The
word wi+1 is a reordering of wi and hence of w0 by induction.

We now define the labeling Li+1 : V (Θ) → N. Let ni be the largest value of Li.
Let (e1, . . . , ed) be the half-edges of Θ incident at t listed in order, where d is the
valence of t. For each ek, let vk be the vertex connected to t by the edge associated
to ek. We set Li+1(vk) = ni + k for each k = 1, . . . , d, and Li+1(v) = Li(v) for all
other v ∈ V (Θ).

Lemma 2.3. Let n = #V (Θ). Then

1 ≤ |�1| ≤ |�2| ≤ · · · ≤ |�R| ≤ n+ c0R.

Proof. For each i ≥ 1, we show |�i| ≤ |�i+1|. Let wR = [u1, . . . , uR]. We have
|�i| = Li(ui). For v ∈ V (Θ), Li(v) = Li+1(v) unless v is in the link of ui; in the
latter case, Li+1(v) is bigger than the maximal value of Li. If ui and ui+1 do not
commute, then ui+1 is in the link of ui, therefore Li+1(ui+1) exceeds the maximal
value of Li, and in particular Li+1(ui+1) > Li(ui). If ui and ui+1 commute, then
they were both ready for position i. In this case, Li(ui+1) = Li+1(ui+1), and ui

was chosen precisely so Li(ui) is minimal among all elements in the set ui+1, . . . , uR

that were ready for position i. We conclude |�i| ≤ |�i+1|.
The largest value of Li+1 is at most c0 plus the largest value of Li. Hence the

largest value of LR is at most n+ c0R. This bounds all |�i|. �

Set CR = n+ c0R. Let DR =
{
± 1,±2, . . . ,±CR, CR + 1

}
and let

WR =
{
(�1, . . . , �R) : �i ∈ DR and |�1| ≤ · · · ≤ |�R|

}
.

Proposition 2.4. There exists an embedding of BR(G) into WR, hence #BR(G) ≤
#WR.

Proof. Let g ∈ BR(G) have ‖g‖S = r. Pick any word w = [s1, . . . , sr] representing
g and let wr be the canonical representative of g induced from w. Let (�1, . . . , �r)
be the code of wr. If r < R, then extend the sequence to (�1, . . . , �r, �r+1, . . . , �R)
by setting �r+i = CR+1 for all i = 1, . . . , R−r. By Lemma 2.3, (�1, . . . , �R) ∈ WR.
This gives a map BR(G) → WR.

To see this is an embedding, we show how to recover wr and hence g from the
sequence (�1, . . . , �R). Recall Θ is equipped with a cyclic ordering of the half-edges
at every vertex and a labeling L0 of the vertices from 1 to n. Let w0 be the empty
word. Suppose for 0 ≤ i ≤ r − 1, Li : V (Θ) → N and a word wi = [u1, . . . , ui]
are defined. If �i+1 = CR + 1, then set ui+1 = ui+2 = · · ·uR = 1. Otherwise,
let v be the unique vertex in Θ with label |�i+1| = Li(v). Set ui+1 = v if �i+1 is
positive and ui+1 = v if �i+1 is negative. Let (v1, . . . , vd) be the vertices in the
link of ui+1 listed in cyclic order. Let ni be the largest value of Li. Construct
Li+1 : V (Θ) → N by setting Li+1(vk) = ni + k and Li+1(u) = Li(u) for all other
u ∈ Θ. Then wr = [u1, . . . , ur]. �
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1420 KASRA RAFI AND JING TAO

We now give an upper bound for the growth rate of #WR, which will complete
the proof of Theorem 2.1.

Lemma 2.5. limR→∞
log#WR

R ≤ log(2c0 + 2) + 1.

Proof. Suppose p(R) and q(R) are two functions of R with limR→∞
p(R)
q(R) = 1

ε .

Then, using Stirling’s formula, log

(
p
q

)
is asymptotic to pH(ε) as R → ∞, where

H(ε) = ε log
1

ε
+ (1− ε) log

1

1− ε

is the binary entropy function. (See [Mac03, Ch. 1].)
For any R ≥ 1 and C ≥ R, by a simple counting argument, the set

W (R,C) =
{
(x1, . . . , xR) : xi ∈ {1, . . . , C}, x1 ≤ · · · ≤ xR

}
has cardinality #W (R,C) =

(
C +R− 1

R

)
.

Let C = CR + 1 = n+ c0R+ 1. We have:

#WR ≤ 2R
(
n+R(c0 + 1)

R

)
and lim

R→∞

n+R(c0 + 1)

R
= c0 + 1.

Therefore,

lim
R→∞

log#WR

R
≤ lim

R→∞

log 2R
(
n+R(c0 + 1)

R

)
R

= lim
R→∞

R log 2 +
(
n+R(c0 + 1)

)
H

(
1

c0+1

)
R

= log 2 + (c0 + 1)H

(
1

c0 + 1

)

= log 2 + log(c0 + 1) + c0 log

(
1 +

1

c0

)
≤ log(2c0 + 2) + 1. �

3. Evolving structures on G–Labeled graphs

A graph is oriented if each edge is oriented. For any edge e of an oriented graph,
denote by i(e) and t(e) the initial and terminal vertex of e. If e is a loop, then
i(e) = t(e). The orientation of e induces an orientation on each half-edge of e: the
half-edge el containing i(e) is oriented so that i(el) = i(e) (t(el) is a point in the
interior of e), and the half-edge er containing t(e) is oriented so that t(er) = t(e).

Given a group G, an oriented graph is G–labeled if each edge is labeled by an
element of G. Two G–labeled graphs are equivalent if one is obtained from the
other by reversing the orientation of some of the edges and relabeling those edges
with the inverse words. This defines an equivalent relation on the set of G–labeled
graphs. Fix n and let Gn(G) be the set of equivalent classes of trivalent G–labeled
graphs of rank n. (Recall the rank of a graph is the rank of its fundamental group.)
We now consider operations that derive from an element in Gn(G) another element
in Gn(G).
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Figure 1. Double split and loop split.

Let Γ ∈ Gn(G). Let e be an edge with label ge. There are two types of edges
in Γ: loop or non-loop. First assume e is not a loop. Choose a half-edge ã (not a
half-edge of e) incident at i(e), and let a be the edge associated to ã with label ga.
Disconnect ã from i(e) and reattach it to t(e), while changing the label ga → gage
if t(ã) = i(e), or ga → gega if i(ã) = i(e). We call this a forward split along e. A
forward split along e is well defined: if we reverse the orientation of a and invert
ga, then the resulting graph is equivalent. Similarly, take a half-edge b̃ incident
at t(e). A backward split along e is obtained by disconnecting b̃ from t(e) and

reattaching it to i(e), while changing the label gb → gegb if i(b̃) = t(e), or gb → gbge
if t(b̃) = i(e). This is again well defined. A double split along e (see Figure 1) is
the composition of a forward and a backward split along e. The resulting graph
from a double split is trivalent, unlike from a backward or forward split alone. If
we reverse the orientation of e and invert ge, then a forward split along e becomes
a backward split along e and vice versa. Therefore, a double split is well defined
on the equivalent class of Γ.

For a loop e, let a be the edge connected to e with label ga. A forward split
along e changes the label ga → gage if t(a) = i(e), or ga → gega if i(a) = i(e). A
backward split changes the label ga → gage if t(a) = i(e), or ga → gega if i(a) = t(e)
(see Figure 1). By a loop split along e we will mean either a forward or a backward
split along e. This is again well defined on the equivalent class of Γ.

For any edge e of Γ, a split along e will mean either a double split or a loop split

depending on the type of e. We will represent a split along e by Γ
s→ Γ′ and call

e = supp(s) the support of s.
Fix Γ0 ∈ Gn(G). A derivation D = [s1, . . . , sR] of length R is a sequence of splits

Γ0
s1−→ Γ1

s2−→ · · · sR−→ ΓR.

Set Γi = [s1, . . . , si](Γ0); also write ΓR = D(Γ0). We will say ΓR is derived from
Γ0 by D. Let BR(Γ0) be the set of all trivalent graphs (up to equivalence) that are
derived from Γ0 by a derivation of length at most R. Our main result is Theorem D,
restated below.
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1422 KASRA RAFI AND JING TAO

Theorem 3.1. For any Γ0 ∈ Gn(G),

lim
R→∞

log#BR(Γ0)

R
≤ 3 log 4.

The main idea behind the proof of Theorem 3.1 is to give a normal form for a
derivation. This was done in [STT92] for unlabeled graphs. It turns out labeled
graphs do not pose significant additional difficulties. We are also careful to obtain
an explicit upper bound for the growth rate of #BR(Γ).
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Figure 2. Configurations of splits.

A split Γ
s−→ Γ′ defines a bijection between the edges of Γ and Γ′. For any edge

e in Γ, let s(e) be its image in Γ′. We say supp(s) and its vertices are destroyed by
s, and s(supp(s)) and its vertices are created by s. All other vertices of Γ survive
s. An edge of Γ survives s if all of its vertices survive s.

Given Γ
s−→ Γ′. If a representative of Γ is chosen, then s naturally induces a

representative for Γ′. Fix a representative in the equivalent class of Γ0. This way,
for any derivation D = [s1, . . . , sR], we can inductively define a representative for
each Γi = [s1, . . . , si](Γ0).

We will refer to Figure 2 for the following discussion. For each vertex v of
Γ0, label the half-edges at v from 1 to 3 so they can be cyclically ordered. Let
D = [s1, . . . , sR] be a derivation. We will cyclically order the half-edges at each
vertex of Γi = [s1, . . . , si](Γ0) and label each si as follows. Let X be a fixed planar
binary tree with four valence-1 vertices. The distinguished middle edge of X is
oriented (see Figure 2). Let P be the planar graph which is the wedge of an interval
and an oriented loop (also see Figure 2). Now suppose for i ≥ 0, the half-edges
of Γi are labeled. Let e be the support of si+1 in Γi. If e is not a loop, then the
cyclic ordering at i(e) and t(e) allows us to identify a contractible neighborhood
of e with X. The four configurations in the left column of Figure 2 represent all
possible double splits with support the middle edge of X. Record the label of the
configuration that si+1 identifies with; this is the label of si+1. Similarly, if e is a
loop, then identify a neighborhood of e with P . Label si+1 by 0 if si+1 is a forward
split along e and label si+1 by 1 otherwise (see Figure 2). Let � ∈ {0, 1, 2, 3} be the
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UNIFORM GROWTH RATE 1423

label of si+1. Note that we always know if e is a loop or not so there is no confusion
with the duplication of the labels 0 and 1. For each vertex v of Γi+1, if v is not
created by si+1, then the half-edges at v will inherit their labels from Γi; otherwise,
label the half-edges at v from 1 to 3 according to the right side of configuration �
in Figure 2.

Let D = [s1, . . . , sR]. Compute the label of each si from above. Fix i ≥ 0 and
let e be any edge in Γi. For k > i+ 1, we will say e survives [si+1, . . . , sk−1] if for
all j = i+ 1, . . . , k− 1, the image of e in Γj−1 survives sj . In particular, e remains
the same type from Γi to Γk−1. Let ei be the preimage of supp(sk) in Γi. We say
sk is ready for Γi if ei survives [si+1, . . . , sk−1]. In this case, we can apply sk to Γi

with support ei using the label of sk; this is well defined since ei is the same type
as supp(sk).

Consider

Γk−2
sk−1−→ Γk−1

sk−→ Γk.

Suppose sk is ready for Γk−2. Apply sk to Γk−2 and let Γ′
k−1 be the resulting

graph. Propagate the labels of half-edges from Γk−2 to Γ′
k−1 as before. Since ek−2

and e = supp(sk−1) are disjoint in Γk−2, e survives sk, so we may apply sk−1 to
Γ′
k−1 with support sk(e) using the label of sk−1. Let

Γk−2
sk−→ Γ′

k−1

sk−1−→ Γ′
k

be the derivation obtained by switching the order of sk−1 and sk. We claim the
following:

Lemma 3.2. With the same notation as above. If sk is ready for Γk−2, then sk−1

and sk commute; that is, Γk = Γ′
k.

sk−1

sk

sk

sk−1

we

wa
we′

we

wawe
we′

we

we′wa
we′

we

we′wawe
we′

Figure 3. If sk is ready for position k − 2, then sk−1 and sk commute.

Proof. For any split s, we say an edge is affected by s if its label is changed by s.
Any split affects at most two edges. Let e and e′ be the supports of sk−1 and sk in
Γk−1 respectively. If sk−1 and sk do not affect the same edge in Γk−2, then they
clearly commute. So let a be an edge in Γk−2 affected by both sk−1 and sk. a must
share a vertex with both e and e′. Since e and e′ are disjoint, a cannot be a loop.
The proof that the labels of sk−1 ◦ sk(a) and sk ◦ sk−1(a) are the same now follows
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1424 KASRA RAFI AND JING TAO

from considering different cases. The proofs in all cases are similar. Figure 3 shows
the case when neither e and e′ are loops and t(e′) = i(a) and t(a) = i(e). Since
sk ◦ sk−1 and sk−1 ◦ sk affect the edges labels the same way, Γ′

k = Γk. �

Let D = [s1, . . . , sR]. For any i ≤ k − 1, if sk is ready for Γi, then sk is ready
for Γj , for all i ≤ j ≤ k − 1. By applying Lemma 3.2 k − i times, we see that

D′ = [s1, . . . , si, sk, si+1, . . . , ŝk, . . . , sR]

is a well-defined derivation and D(Γ0) = D′(Γ0).
Set D0 = D and let ΓR = D(Γ0). Inductively, we will construct a sequence

D1, . . . , DR of derivations such that Dj(Γ0) = ΓR for all j = 1, . . . , R. The final
derivation DR will be called the canonical derivation of ΓR coming from D0.

Let M = 2n − 2 be the number of vertices of Γ0. Label each vertex of Γ0 by a
distinct integer from 1 to M . Similarly, label the edges of Γ0 from 1 to N , where
N = 3n− 3 is the number of edges of Γ0.

Suppose for i ≥ 0, Di = [u1, . . . , ui, ti+1, . . . , tR] has been constructed. Also,
suppose the vertices and edges of Γ′

i have been labeled, where Γ′
i = [u1, . . . , ui](Γ0).

Let U be the subset of {ti+1, . . . , tR} consisting of splits that are ready for Γ′
i. Pick

t ∈ U such that t destroys the vertex of Γ′
i with the lowest label. Set

Di+1 = [u1, . . . , ui, t, ti+1, . . . , t̂, . . . , tR].

Set ui+1 = t and let Γ′
i+1 = [u1, . . . , ui+1](Γ0). Let Mi and Ni be the maximal

vertex and edge label of Γ′
i. Let f be the edge in Γ′

i+1 created by t. Label f by
Ni +1. If f is a loop, then label its vertex by Mi +1. If f is not a loop, then label
i(f) by Mi +1 and t(f) by Mi +2. All other vertices and edges of Γ′

i+1 will inherit
their label from Γ′

i. This completes the construction.
Since Γ0 has 2n− 2 vertices and at most two vertices are created in each stage,

the maximal vertex label of ΓR is at most 2n−2+2R. Similarly, the maximal edge
label of ΓR is at most 3n− 3 +R. Let

V = {1, . . . , 2n− 2 + 2R}, E = {1, . . . , 3n− 3 +R}.

Let FR be the set of all pairs of functions (φ, ψ), where φ : V → {0, 1, 2, 3} and
ψ : E → {0, 1, 2, 3}.

Proposition 3.3. There exists an embedding of BR(Γ0) into FR, hence #BR(Γ0) ≤
#FR.

Proof. By definition, any Γ ∈ BR(Γ0) can be obtained from Γ0 by a derivation D
of length r ≤ R. Let Dr be the canonical derivation of Γ coming from D. We now
encode Dr by a pair of maps φ : V → {0, 1, 2, 3} and ψ : E → {0, 1, 2, 3}. Set Dr

Γ0
u1−→ Γ1

u2−→ · · · ur−→ Γr.

For i ∈ V , let j be the largest index so that Γj has a vertex v with label i. If
j ≥ R (j > R means no such label exists), then set φ(i) = 0. If j < R, then uj+1

must destroy v, so the support of uj+1 is an edge e in Γj where v is either i(e) or
t(e). Define φ(i) ∈ {1, 2, 3} to be the label of the half-edge of e containing vertex v.
If e is a loop, then choose φ(i) to be the label of any half-edge of e. For i ∈ E, let
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k be the largest index so that Γk has an edge e of label i. If k ≥ R, then ψ(i) = 0.
If k < R, then e is the support of tk+1. In this case, define ψ(i) ∈ {0, . . . , 3} to be
the label of tk+1.

To see this is an embedding, we will give a decoding procedure that will recover
from (φ, ψ) the canonical derivation Dr = [u1, . . . , ur] and hence Γ.

For each k ≥ 0, suppose Γ′
k has been constructed. In Γ′

k, let i range from 1 to
2n − 2 + 2k in order and let v be the vertex in Γk with label i. If φ(i) = 0, then
move on to i+1. Otherwise, φ(i) determines a unique edge e, where v is either the
initial or terminal vertex of e, such that the half-edge of e at v has label φ(i). We
now explain a matching procedure that can occur in two ways. If e is a loop, then
we have a match. If e is not a loop, then let w be the other vertex of e with label
i′. If φ(i′) is exactly the label of the half-edge of e at w, then we have a match. In
all other cases, there is no match and we move on to i+1. If there is a match, then
let j ∈ E be the label of e. The configuration ψ(j) determines a split supported on
e which we call u′

k+1, and applying u′
k+1 to Γ′

k yields Γ′
k+1. Proceed this way until

k = r results in a derivation D′.
To see that D′ = Dr. Let e be the support of uk. The encoding procedure

ensures that the values of φ on the labels of i(e) and t(e) determine e, and hence a
match, and the value of ψ on the label of e agrees with uk. Furthermore, since only
the splits that are ready at Γk−1 can determine a match, and uk is the unique one
among them that destroys the vertex of Γk−1 with the smallest label, the match
coming from uk will always be the first match the decoding procedure finds. This
shows Γk = Γ′

k and tk = t′k for all k. Therefore, BR(Γ0) embeds in FR. �

Since #FR = 45n−5+3R, limR→∞
log#FR

R = 3 log 4. This completes the proof of
Theorem 3.1.

3.1. Triangulations of a surface. Let Σ = Σg,p be an oriented surface of genus
g with p punctures. For any n ≥ p, let Tn = Tn(Σ) be the set of homotopy classes
of triangulations of Σ with n vertices (the punctures of Σ are always vertices of
triangles.) A natural transformation of a triangulation is a diagonal flip. Given
T ∈ Tn. Let Δ and Δ′ be two triangles in T that share a common edge E. View
Δ ∪Δ′ as a quadrilateral with diagonal E. Replacing E by the other diagonal in
the quadrilateral yields a triangulation T ′ ∈ Tn. Call this process a (diagonal) flip

about E and denote it by T
d−→ T ′. Let BR(T ) be the set of all triangulations of

Σ obtained from T by a sequence of at most R diagonal flips.
Fix T0 ∈ Tn. Dual to T0 is a trivalent graph Γ0 obtained by putting a vertex

in the interior of each triangle and connecting two vertices by an edge when two
triangles share an edge. Pick a vertex x0 in Γ0 and let G = π1(Σ, x0). We will label
each edge of Γ0 by an element of G as follows. Orient the edges of Γ0 arbitrarily.
Pick a spanning tree K0 in Γ0 and label each edge of K0 by 1. Each edge e in the
complement of K0 represents an element of G: connect the end points of e to x0

along K0 and orient the resulting closed curve so that it matches the orientation of
e in Γ0. Now, label e by the element that this closed curve represents in G. This
makes a G–labeled graph Γ0 ∈ Gm(G), where m = 2g + n− 1 is the rank of Γ0.

By a pair (Γ, f) we will mean a G–labeled graph Γ ∈ Gm(G) together with an
embedding f : Γ → Σ. We say a pair (Γ, f) is well-labeled if for any closed path p in
Γ, the product of labels of edges along p is in the conjugacy class in G represented
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1426 KASRA RAFI AND JING TAO

by f(p). By construction, (Γ0, i), where Γ0 is the dual graph to T0 and i is the
inclusion map, is well-labeled.

Proposition 3.4. There exists an embedding of BR(T0) into BR(Γ0), hence
#BR(T0) ≤ #BR(Γ0).

Proof. Assume T and a well-labeled dual graph (Γ, i) are given. Consider a flip

T
d−→ T ′ about an edge E in T and let e be the edge in Γ dual to E. Identify

the quadrilateral containing E and a contractible neighborhood of e dual to the

quadrilateral with the left-hand side of Figure 4. We define a split move Γ
s−→ Γ′

supported on e, where (Γ′, i) is also embedded in Σ, as indicated by Figure 4. We
refer to s as the split associated to the flip d. Note that a closed path p in Γ can
naturally be mapped to a homotopic closed path p′ in Γ′ and the products of labels
along edges of p and p′ are the same. That is, the pair (Γ′, i) is still well-labeled.

ge
gb

ga

ge

gegb

gage

Figure 4. Flip and dual split.

We now define a map from BR(T0) to BR(Γ0). For any T ∈ BR(T0), choose an

arbitrary sequence of flips T0
d1−→ T1

d2−→ · · · dR−→ TR = T and let Γ0
s1−→ Γ1

s2−→
· · · sR−→ ΓR be the associated sequence of dual splits as constructed above. The map
from BR(T0) to BR(Γ0) is defined by sending TR to (ΓR, i) and then to ΓR.

We show that this map is injective. In fact, for triangulations T and T ′ and dual
labeled graphs (Γ, i) and (Γ′, i) that are well-labeled, we show that if Γ and Γ′ are
equivalent G–labeled graphs, then there exists a homeomorphism of Σ homotopic
to the identity taking T to T ′.

Since Γ and Γ′ are equivalent, there is a graph isomorphism φ : Γ → Γ′ such that
the label of any edge e ∈ Γ matches the label of φ(e) ∈ Γ′. Since Γ and Γ′ are dual
graphs to the triangulations T and T ′ respectively, we can build a homeomorphism
f : Σ → Σ mapping a triangle of T associated to a vertex v ∈ Γ to the triangle
of T ′ associated to the vertex φ(v). To show that φ is homotopic to identity, it is
sufficient to show that every closed path q in Σ is homotopic to f(q).

First perturb q so it misses the vertices of T . Then q can be pushed to a closed
path p in Γ. Since q is homotopic to p, we have f(q) is homotopic to p′ = f(p). But
the product of labels along the closed paths p and p′ are identical, which means
p and p′ represent the same conjugacy class in G and hence are homotopic. This
finishes the proof. �

Theorem E from the introduction now follows from Theorem 3.1 and Proposi-
tion 3.4.
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