EMBEDDING FUNCTION SPACES INTO /. /cg
STEVO TODORCEVIC

ABSTRACT. We show that if the space £, /¢y contains an isometric
copy of every function space over a first countable compactum
or every function space over a Corson copactum of weight not
exceeding the continuum then every subset of R? belongs to the o-
field generated by sets of the form A; x As. We prove a similar result
about isomorphic rather than isometric embeddings into ¢, /co in
terms of the o-field of subsets of R* generated by sets of the form
Ay x -+ X Ay for other positive integers k.

1. INTRODUCTION

Fix an infinite index set S. Let R(S?) be the o-field of subsets of S?
generated by ‘rectangles’; i.e., the sets of the form A x B for A, B C S.
It is a classical problem of set theory' to determine for which index
sets S do we have that R(S?) includes all subsets of S?. Clearly, this
depends only on the cardinality of the set S. From a classical result
of Rothberger [7] it follows easily that this is the case for every set S
of cardinality at most Ny, though this result appears explicitly only in
the work of Kunen [4] and Rao [6] from the late 1960’s. The purpose
of this note is to connect this problem with a classical problem from
the geometry of Banach space which ask to which extent is the space
(/o universal in the class of Banach spaces of density at most con-
tinuum. Recall, for example, the classical result of Parovichenko [5]
stating that the function space C'(K) over an arbitrary compactum of
weight at most N; is isometric to a subspace of £, /co. So it is natural
to ask if some structural conditions on K rather than the restriction
on weight would guarantee the isometric or isomorphic embedding of
C(K) into l/co. We show that if /o /cy contains the isometric copy
of every function space of the form C(K) for K either a first count-
able compactum or a Corson compactum of weight at most continuum
then the o-field of subsets of R? generated by rectangles contains all
subsets of R%. We prove a similar result about the isomorphic rather
than isometric universality of the space f/co in terms of the o-field
of subsets R¥ generated by sets of the form A; x - - - x A, for other

'Due originally to S.M. Ulam (Probléme No. 74, Fund. Math. 30 (1938), 365).
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positive integers k. As it is well known the universality of ¢, /cy can-
not be demonstrated on the basis of the usual axioms of set theory.
So, as expected, all the properties of the o-field of subsets of R? or,
more generally, of R*¥ that we mention here cannot be demonstrated
on the basis of the usual axioms of set theory as well. In fact, as first
shown by Kunen [4], all the consequences about the o-fields generated
by rectangles that we obtain here fail when more that continuum many
Cohen reals are added to a model of set theory.

We use standard set-theoretic terminology as well as the standard
terminology about Banach spaces which the reader can find in many
textbooks devoted to these areas. The elements of quotient space £, /co
will be treated in terms of their representatives in f,. This has some
advantages since £, carries the separable metric topology induces from
the power RY. For example, if we let || - || denote the norm of £, /co
then for a fixed real number M the condition like | x +y ||> M
gives us an Fjs-subset of /o, x f, equipped with the separable metric
topology. Now note that for every index set S and every separable
metric topology 7 on S every Borel subset of (S,7)* belongs to the
o-field generated by sets of the form A; x - - - x Ag.

2. FIRST COUNTABLE COMPACTA

Fix a set £ C [I]? of unordered pairs of the unit interval I = [0, 1].
For an integer k > 2, set

EW = {{ay,...,ax} € [1]*: {ai,a;} € E for all i < j}.

Clearly Bl = E. For every integer k > 2, we define a topology on
X = IF U E™ by letting all points of E¥ isolated while a neighbor-
hood of an (ay,...,a;) € I* is given by

{(al,bg, ,bk) : |bz — ai] < E} U {{al,bg, ,bk} € E[k] . |bl — ai\ < 5}

for some ¢ > 0. Then Xpwm = I* U EW is a locally compact first
countable space since for each a € I, the set

D, = ({a} x "YU {{ay, ...,ar} € EM : a; = a for some i}

is an open compact first countable space being essentially homeomor-
phic to closed subspace of the Alexandroff duplicate of the power 75!
with some isolated points removed. It turns out that Xy has a first
countable compactification K gu = X i U[I]=* by adding to the family
of neighborhoods of Xy the following family of sets

{(VU(f(V)\C):V open in [I|5*,C compact inX u},
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where f : Xpw — [[]=F is the continuous map defined by f(ay, ..., ax) =
{ai,...,ax} and f({ai,...,ax}) = {ai,...,ax} and where we take [[]=F
with the compact metric topology induced from the hyperspace exp(7).
Recall that exp([) is the collection of closed subsets of I with the
topology given by the sets of the form (F) = {H € exp(I) : H C F'}
and [F] = {H € exp(l) : HNF # 0} for F € exp([) as subbasis for
closed sets . The map f is finite-to-one and is continuous because

FHEY N [IFF) = FEu ((F]F 0 BM)

and

FYUFIN[ISF) ={@eI*:a; € F for some i} U{s € EW :snNF # ()}
are closed subsets of Xy for every closed subset F' of I. The case
k = 2 of this construction is due to M. Bell [1] where the reader can
also find a proof of a topological result due to Uljanov [10] that lies
behind the idea that this kind of locally compact space might admit
first countable compactifications.

2.1 Lemma. Suppose that l/co contains a subspace with Banach-
Mazur distance to C(Kgw) smaller than k. Then E* and (E¢)® can
be separated by a set belonging to the o-field of subsets of I* generated
by ‘k-cubes’ i.e., products of the form Ay x - - -Ay.>

Proof. Fix an isomorphic linear embedding T : C(Kguw) — (/o
such that & >|| T |||| T7' || . For a € I, let 1, : Kz — {0,1}
be the characteristic function of the compact open subset D, and let
z, = T(1,). Fix a k-sequence a; < ... < a; of elements of I. Then
{ay,...,ax} € EM implies that {ay, ..., az} € (-, Da,, or in other words
| 1o, + ... + 14, ||co> k. It follows that
| @ay + ot o (|2 B/ [T >] T

On the other hand, {a1,...,a;} € (E°)¥ implies that D,, N D,, = 0 for
i# jandso || 1g + ... + 14, o= 1. Then || 2o, + ... + 24, < T -

Hence, we can separate El¥ from (£°)* by a member of the o-field of
subsets of I* generated by k-cubes. U

For a set E C [I]? of unordered pairs of elements of I, let K be the
one-point compactification of the topological sum ®k22 Kpm.
2.2 Corollary. If C(Kg) is isomorphic to a subspace of ly/co then
for all but finitely many k the sets E¥ and (E)¥ are separated by a
set belonging to the o-field of subsets of I* generated by k-cubes.

2Here E° denotes the complement of E, i.e, the set [I]2\ E, and we identify E*]
and (E°)¥ with subsets of I* obtained identifying a k-element subset of I with its
increasing enumeration according to the usual ordering of I.
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Note that since E? = E. the condition that E and its complement
E¢ can be separated by a a set belonging to the o-field generated by
rectangles simply means that E itself belongs to that o-field. So the
following two results summarize what we have proved so far.

2.3 Theorem. Suppose that {,/cy contains an isometric copy of every
function space C(K) over a first countable compactum K. Then every
subset of R? belongs to the o-field generated by rectangles.

2.4 Theorem. Suppose that l,/cy contains an isomorphic copy of ev-
ery function space C(K) over every first countable compactum K. Then
for every binary relation E on I and for all but finitely many positive
integers k, the sets EW™ and (E°)™ are separated by a member of the
o-field of subsets of I* generated by k-cubes.

We finish this section with the following corollary of Theorem 2.3.

2.5 Theorem. Suppose l/cy contains an isometric copy of every
function space C(K) over a first countable compactum K. Then 2% = ¢
for every infinite cardinal 6 < ¢ such that cf(2%) < c.

Proof. 1t suffices to use the the existence of a cardinal § < ¢ such that
29 > ¢ > cf(29) to produce a subset of R? not in the o-field generated
by rectangles. Let A = cf(2?). Choose a subset C' of R partitioned as
C' = ey Ce into A pairwise disjoint subsets Cy all of size 6. Choose
an increasing decomposition P(C) = [J,_, F¢ of the power set of C
into families F¢ of subsets of C' such that |F¢| < 2. Then for every
£ < 0 the o-field of subsets of R? generated by rectangles of the form
A x B with A, B € F¢ has cardinality < 2%, so we can find E; C Cg
not belonging to this o-field. Let E = U£</\ E¢. Then FE is a subset of
R? not belonging to the o-field generated by rectangles. 0

The above proof is an adaptation of an argument of Rothberger [8]
who was using the same assumption on cardinals for a similar purpose.
Let us say that a family F C RF of real functions has countable base if
there is a sequence (g,) C R¥ of real unctions such that for every f € F
there is a subsequence (g, ) € (gn) such that f(a) = limg_ gn, (a) for
all a € R. Clearly every such family has cardinality not bigger than the
continuum so a natural question® is to ask if the converse also holds.
Note that in this problem we can restrict the range of functions to the
set {0, 1} rather than R and so this is really a part of a more general
question asking for which index sets S which families F of two-valued
functions defined on S have countable base. In [7], Rothberger showed
that every family of real functions F of size at most N; defined on an

3See, Fund. Math., vol. 27 (1936) p. 293, probléme de M. Sierpiriski.
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index set S which is also of size at most ¥; has a countable base. In
9], we have extended this result to index sets S of size p and families
of real function defined on S of sizes not bigger than p.* The following
simple fact connects the two problems.

2.6 Lemma. If every F C R® of size continuum has a countable base
then every subset of R? belongs to the o-field generated by rectangles.

Proof. Fix a subset E of R% For a € R define f, : R — 2 by: f,(b) =1
iff (a,b) € E. Then F = {f, : a € R} is a family of real functions of
size at most continuum. Let {g, : R — 2 : n € N} be a countable base
for the family F. Then for each a € R, we can fix a strictly increasing
sequence (nf) C N such that f,(b) = limg oo gne (b) for all b € R. Now,
to each n € N, we assign the following two sets of reals

A, ={a:n =nj for some k} and B, = {b: g,(b) = 1}.
Then E = (1,, U, 5m An X B, and so E belongs to the o-field of subsets
of R? generated by rectangles. 0

3. COrRSON COMPACTA

In this section we consider embeddings of function spaces over Corson
compacta. Recall that these are the compact subspaces of the Y-powers
{z € [0,1]" : {y € T : x(y) # 0} < Ng}. Of course we will need to
restrict their weights not to exceed the continuum. Let us first examine
isometric embeddings into £ /co.

3.1 Theorem. Suppose (. /co contains an isometric copy of every
function space C(K) over a Corson compactum K of weight at most
continuum. Then every subset of R? belongs to the o-field generated by
rectangles.

Proof. We start first with the assumption that there is a well ordering
< of R which as a subset of R? does not belong to the o-field generated
by rectangles. Let < denote the usual ordering of R. Let K be the
collection of all subsets of R on which the two orderings < and <
agree. Then K with the topology inherited from the Cantor cube 2%
when naturally identified with the power-set of R is a Corson compact
space. We shall show that C(K) is not isometric to a subspace of
l~/co. Suppose that there is a linear operator T': C'(K) — /¢ such
that || T ||= 1. For a € R, let 1, : K — {0, 1} be defined by

1o(A) = 1 iff a € A.

4Recall that p is the minimal cardinality of a family H of infinite subsets of H
such that every finite subfamily of H has infinite intersection but there is no single
infinite subset b of N such that b\ a is finite for all a € H.
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Clearly 1, € C(K) for all a € R. Let z, = T'(1,). Then || z, ||= 1 for
all a € R. Moreover, for two different elements a and b of R, we have
that

| xg +xp [|> 1iff || 1o+ 1p ||oo> 1 iff {a,b} € K.
Since {a, b} € K holds if and only if the two orderings < and < agree on
{a, b} and since clearly < belongs to the o-field generated by rectangles,
we conclude that < belongs to that field as well, a contradiction.

To prove the general result about Corson compacta, we may assume
that there is a well-ordering < of R which belongs to the o-field gen-
erated by rectangles. Fix a subset E of R that does not belong to the
o-field of subsets of R generated by rectangles. We may assume that
a < b for all (a,b) € E. Since < is in the o-field generated by rectangles
one of the sets EN < of F\ < is not in the o-field. By symmetry, we
may assume that Fy = EN < is not in the o-field. Let Ky be the
collection of all subsets A of R such that (a,b) € Ey for all @ < b in A.
Then being a closed subspace of the compactum K considered above
Ky is also a Corson compact space. If C(Kj) is isometric to a sub-
space of (. /co then the argument above would give us a description
for a < b of the membership of (a,b) in Ey in terms of the condition
| zo + xp ||> 1. So, in particular E; would belong to the o-field of
subsets of R? generated by rectangles. O

3.2 Corollary. Suppose l/co contains an isometric copy of every
function space C(K) over a Corson compactum K of weight at most
continuum. Then 2% = ¢ for every infinite 6 < ¢ such that cf(2%) < «.

Let us now examine similar result about isomorphic rather than iso-
metric embedding function spaces over Corson compacta into £, /co.
As before, for a binary relation £ on R and an integer k > 1, we set

EW = {(ay,...,a) € R* : a; # a; and (a;,a;) € E for all i < j}.
Let E° denote the complementary relation, i.e., B¢ = R?\ E.

3.3 Theorem. Suppose that {y,/cy contains an isomorphic copy of ev-
ery function space C(K) over a Corson compactum K of weight at
most continuum. Then for every binary relation E on R and for all
but finitely many positive integers k, the sets B and (E°) are sepa-
rated by a member of the o-field of subsets of R¥ generated by k-cubes.

Proof. As in the case of isometric embeddings, we fix a well-ordering
< of the continuum and consider first the case of the relation

E={(a,b)eR*:a < band a < b}.

As above, let K be the Corson compactum of all subsets of R on which
the two orderings < and < agree. Let T : C(K) — {x/co be an
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isomorphic embedding and fix an integer k >|| T |||| 77" || . As before
for a € R we let 1, be the corresponding indicator function on K and
z, = T'(1,) be the corresponding member of ¢, /co.

Fix a k-sequence a; < ... < aj, of reals. Then (ai,...,a;) € EW¥
implies || 14, + ... + 14, [|o> k and so as before

I 2oy + ot o |26/ T > T

On the other hand, (a1, ..., az) € (E9)* implies || 15, + ... + 14, [loo= 1
and so || @4, + ... + x4, ||<|| T || . It follows that we can separate
E™ from (E°) by a member of the o-field of subsets of R* generated
by k-cubes. To get the same conclusion about an arbitrary irreflexive
binary relation Fy on R we proceed as above and note that we may
assume without loss of generality that it is included in the relation
E =< N < and consider the corresponding Corson compactum K
getting the desired conclusion. 0

4. EMBEDDING C([0,ws]) INTO £y /co

Recall that by Parovichenko’s result [5], for every ordinal v < ws, the
function space C([0,7]) isometrically embeds into £ /cy. In hindsight,
Kunen [4] was the first to show that this may not hold for the larger
function space C([0,ws]), at least if one is not willing to go beyond the
usual axioms of set theory. In [2] (see also [3]), arguing along similar
lines, Kunen’s result has been extended to cover also the isomorphic
rather than isometric embeddings of C'([0,ws]) into £ /co. It turns out
that working as above the embeddability of C([0,ws]) into ¢o/co can

also be connected with the separation properties of the o-fields R(w§).

4.1 Theorem. If the space ly,/cy contains an isometric copy of the
space C([0,ws)) then the ordering of wy belongs to the o-field of subsets
of wy X wy generated by rectangles.

Proof. Fix a linear operator T : C([0,ws]) — fo/co of norm 1. For
a < wy let 1 4 be the characteristic function of the interval [0, o] and
let yo = T(1jaw) and T4 = Yat1 — Yo Then for a, 3 < wy, we have
that o < §if and only if || z,+ys ||> 0, and so the usual ordering of ws
belongs to the o-field of subsets of wy X ws generated by rectangles. [J

It is easily seen that having the ordering of ws in the o-field of subsets
of wy generated by rectangles does not imply that every other subset
of wy X wy is in the same o-field. This could be shown by forcing
an isometric embedding of C([0,ws]) into ¢« /co while arranging the
cardinal inequalities 20 > ¢ > cf(0) for 6 = ws. In fact, with little extra
work, one can show that the same forcing extension has a function
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space C'(K) over a first countable compactum K which does not even
isomorphically embed into ¢, /c.

To state a similar result for isomorphic rather than isometric embed-
ding, for a permutation o : {1,....,k} — {1,...,k}, we let

<ll— {(o_/l, ,_,,ak) € w§ oy < @ iff 0'(1) < U(])}

For each positive integer k, we define also a particular permutation
pr {1, ...k} — {1,..., k} such that pr(27) > pp(2j +2) > pp(2i +1) >
pr(2i — 1) for all positive integers ¢ and j for which these numbers are
smaller or equal than k.

4.2 Theorem. Suppose that k >|| T ||| T~ || for some linear operator
T : C([0,ws]) — loo/co. Then <21l gnd <lp2=11 can be separated by
a set belonging to the o-field of subsets of w2*~' generated by (2k —1)-
products Ay X -+ X Agp_1.

Proof. For av < ws, welet zq = T'(1(a,u,])- Then oy < ... < ag—; implies
that | (20, — 2s) + (ay — Ze) o+ 2+ <] T | - O the other hand,

(a1, oy qgp—1) €<= implies || (2ay —Zas) + (Zag = Zag) -+ Zage; ||>
k/ || T7Y||>|| T || . This gives us the conclusion of Theorem 4.2. [
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