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Abstract. We show that if the space `∞/c0 contains an isometric
copy of every function space over a first countable compactum
or every function space over a Corson copactum of weight not
exceeding the continuum then every subset of R2 belongs to the σ-
field generated by sets of the form A1×A2.We prove a similar result
about isomorphic rather than isometric embeddings into `∞/c0 in
terms of the σ-field of subsets of Rk generated by sets of the form
A1 × · · · ×Ak for other positive integers k.

1. Introduction

Fix an infinite index set S. Let R(S2) be the σ-field of subsets of S2

generated by ‘rectangles’, i.e., the sets of the form A×B for A,B ⊆ S.
It is a classical problem of set theory1 to determine for which index
sets S do we have that R(S2) includes all subsets of S2. Clearly, this
depends only on the cardinality of the set S. From a classical result
of Rothberger [7] it follows easily that this is the case for every set S
of cardinality at most ℵ1, though this result appears explicitly only in
the work of Kunen [4] and Rao [6] from the late 1960’s. The purpose
of this note is to connect this problem with a classical problem from
the geometry of Banach space which ask to which extent is the space
`∞/c0 universal in the class of Banach spaces of density at most con-
tinuum. Recall, for example, the classical result of Parovichenko [5]
stating that the function space C(K) over an arbitrary compactum of
weight at most ℵ1 is isometric to a subspace of `∞/c0. So it is natural
to ask if some structural conditions on K rather than the restriction
on weight would guarantee the isometric or isomorphic embedding of
C(K) into `∞/c0. We show that if `∞/c0 contains the isometric copy
of every function space of the form C(K) for K either a first count-
able compactum or a Corson compactum of weight at most continuum
then the σ-field of subsets of R2 generated by rectangles contains all
subsets of R2. We prove a similar result about the isomorphic rather
than isometric universality of the space `∞/c0 in terms of the σ-field
of subsets Rk generated by sets of the form A1 × · · · × Ak for other

1Due originally to S.M. Ulam (Problème No. 74, Fund. Math. 30 (1938), 365).
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positive integers k. As it is well known the universality of `∞/c0 can-
not be demonstrated on the basis of the usual axioms of set theory.
So, as expected, all the properties of the σ-field of subsets of R2 or,
more generally, of Rk that we mention here cannot be demonstrated
on the basis of the usual axioms of set theory as well. In fact, as first
shown by Kunen [4], all the consequences about the σ-fields generated
by rectangles that we obtain here fail when more that continuum many
Cohen reals are added to a model of set theory.

We use standard set-theoretic terminology as well as the standard
terminology about Banach spaces which the reader can find in many
textbooks devoted to these areas. The elements of quotient space `∞/c0

will be treated in terms of their representatives in `∞. This has some
advantages since `∞ carries the separable metric topology induces from
the power RN. For example, if we let ‖ · ‖ denote the norm of `∞/c0

then for a fixed real number M the condition like ‖ x + y ‖> M
gives us an Fσδ-subset of `∞ × `∞ equipped with the separable metric
topology. Now note that for every index set S and every separable
metric topology τ on S every Borel subset of (S, τ)k belongs to the
σ-field generated by sets of the form A1 × · · · × Ak.

2. First Countable Compacta

Fix a set E ⊆ [I]2 of unordered pairs of the unit interval I = [0, 1].
For an integer k ≥ 2, set

E[k] = {{a1, ..., ak} ∈ [I]k : {ai, aj} ∈ E for all i < j}.

Clearly E[2] = E. For every integer k ≥ 2, we define a topology on
XE[k] = Ik ∪E[k] by letting all points of E[k] isolated while a neighbor-
hood of an (a1, ..., ak) ∈ Ik is given by

{(a1, b2, ..., bk) : |bi − ai| < ε} ∪ {{a1, b2, ..., bk} ∈ E[k] : |bi − ai| < ε}

for some ε > 0. Then XE[k] = Ik ∪ E[k] is a locally compact first
countable space since for each a ∈ I, the set

Da = ({a} × Ik−1) ∪ {{a1, ..., ak} ∈ E[k] : ai = a for some i}

is an open compact first countable space being essentially homeomor-
phic to closed subspace of the Alexandroff duplicate of the power Ik−1

with some isolated points removed. It turns out that XE[k] has a first
countable compactification KE[k] = XE[k]∪[I]≤k by adding to the family
of neighborhoods of XE[k] the following family of sets

{V ∪ (f−1(V ) \ C) : V open in [I]≤k, C compact inXE[k]},
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where f : XE[k] → [I]≤k is the continuous map defined by f(a1, ..., ak) =
{a1, ..., ak} and f({a1, ..., ak}) = {a1, ..., ak} and where we take [I]≤k

with the compact metric topology induced from the hyperspace exp(I).
Recall that exp(I) is the collection of closed subsets of I with the
topology given by the sets of the form 〈F 〉 = {H ∈ exp(I) : H ⊆ F}
and [F ] = {H ∈ exp(I) : H ∩ F 6= ∅} for F ∈ exp(I) as subbasis for
closed sets . The map f is finite-to-one and is continuous because

f−1(〈F 〉 ∩ [I]≤k) = F k ∪ ([F ]k ∩ E[k])

and

f−1([F ]∩ [I]≤k) = {~a ∈ Ik : ai ∈ F for some i}∪{s ∈ E[k] : s∩F 6= ∅}
are closed subsets of XE[k] for every closed subset F of I. The case
k = 2 of this construction is due to M. Bell [1] where the reader can
also find a proof of a topological result due to Uljanov [10] that lies
behind the idea that this kind of locally compact space might admit
first countable compactifications.

2.1 Lemma. Suppose that `∞/c0 contains a subspace with Banach-
Mazur distance to C(KE[k]) smaller than k. Then E[k] and (Ec)[k] can
be separated by a set belonging to the σ-field of subsets of Ik generated
by ‘k-cubes’ i.e., products of the form A1 × · · ·Ak.2

Proof. Fix an isomorphic linear embedding T : C(KE[k]) → `∞/c0

such that k >‖ T ‖‖ T−1 ‖ . For a ∈ I, let 1a : KE[k] → {0, 1}
be the characteristic function of the compact open subset Da and let
xa = T (1a). Fix a k-sequence a1 < ... < ak of elements of I. Then

{a1, ..., ak} ∈ E[k] implies that {a1, ..., ak} ∈
⋂k
i=1Dai

, or in other words
‖ 1a1 + ...+ 1ak

‖∞≥ k. It follows that

‖ xa1 + ...+ xak
‖≥ k/ ‖ T−1 ‖>‖ T ‖ .

On the other hand, {a1, ..., ak} ∈ (Ec)[k] implies that Dai
∩Daj

= ∅ for
i 6= j and so ‖ 1a1 + ... + 1ak

‖∞= 1. Then ‖ xa1 + ... + xak
‖≤‖ T ‖ .

Hence, we can separate E[k] from (Ec)[k] by a member of the σ-field of
subsets of Ik generated by k-cubes. �

For a set E ⊆ [I]2 of unordered pairs of elements of I, let KE be the
one-point compactification of the topological sum

⊕
k≥2KE[k] .

2.2 Corollary. If C(KE) is isomorphic to a subspace of `∞/c0 then
for all but finitely many k the sets E[k] and (Ec)[k] are separated by a
set belonging to the σ-field of subsets of Ik generated by k-cubes.

2Here Ec denotes the complement of E, i.e, the set [I]2 \E, and we identify E[k]

and (Ec)[k] with subsets of Ik obtained identifying a k-element subset of I with its
increasing enumeration according to the usual ordering of I.
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Note that since E[2] = E, the condition that E and its complement
Ec can be separated by a a set belonging to the σ-field generated by
rectangles simply means that E itself belongs to that σ-field. So the
following two results summarize what we have proved so far.

2.3 Theorem. Suppose that `∞/c0 contains an isometric copy of every
function space C(K) over a first countable compactum K. Then every
subset of R2 belongs to the σ-field generated by rectangles.

2.4 Theorem. Suppose that `∞/c0 contains an isomorphic copy of ev-
ery function space C(K) over every first countable compactum K. Then
for every binary relation E on I and for all but finitely many positive
integers k, the sets E[k] and (Ec)[k] are separated by a member of the
σ-field of subsets of Ik generated by k-cubes.

We finish this section with the following corollary of Theorem 2.3.

2.5 Theorem. Suppose `∞/c0 contains an isometric copy of every
function space C(K) over a first countable compactum K. Then 2θ = c
for every infinite cardinal θ < c such that cf(2θ) ≤ c.

Proof. It suffices to use the the existence of a cardinal θ < c such that
2θ > c ≥ cf(2θ) to produce a subset of R2 not in the σ-field generated
by rectangles. Let λ = cf(2θ). Choose a subset C of R partitioned as
C =

⋃
ξ<λCξ into λ pairwise disjoint subsets Cξ all of size θ. Choose

an increasing decomposition P(C) =
⋃
ξ<λFξ of the power set of C

into families Fξ of subsets of C such that |Fξ| < 2θ. Then for every
ξ < θ the σ-field of subsets of R2 generated by rectangles of the form
A × B with A,B ∈ Fξ has cardinality < 2θ, so we can find Eξ ⊆ C2

ξ

not belonging to this σ-field. Let E =
⋃
ξ<λEξ. Then E is a subset of

R2 not belonging to the σ-field generated by rectangles. �

The above proof is an adaptation of an argument of Rothberger [8]
who was using the same assumption on cardinals for a similar purpose.
Let us say that a family F ⊆ RR of real functions has countable base if
there is a sequence (gn) ⊆ RR of real unctions such that for every f ∈ F
there is a subsequence (gnk

) ⊆ (gn) such that f(a) = limk→∞ gnk
(a) for

all a ∈ R. Clearly every such family has cardinality not bigger than the
continuum so a natural question3 is to ask if the converse also holds.
Note that in this problem we can restrict the range of functions to the
set {0, 1} rather than R and so this is really a part of a more general
question asking for which index sets S which families F of two-valued
functions defined on S have countable base. In [7], Rothberger showed
that every family of real functions F of size at most ℵ1 defined on an

3See, Fund. Math., vol. 27 (1936) p. 293, problème de M. Sierpiński.
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index set S which is also of size at most ℵ1 has a countable base. In
[9], we have extended this result to index sets S of size p and families
of real function defined on S of sizes not bigger than p.4 The following
simple fact connects the two problems.

2.6 Lemma. If every F ⊆ RR of size continuum has a countable base
then every subset of R2 belongs to the σ-field generated by rectangles.

Proof. Fix a subset E of R2. For a ∈ R define fa : R→ 2 by: fa(b) = 1
iff (a, b) ∈ E. Then F = {fa : a ∈ R} is a family of real functions of
size at most continuum. Let {gn : R→ 2 : n ∈ N} be a countable base
for the family F . Then for each a ∈ R, we can fix a strictly increasing
sequence (nak) ⊆ N such that fa(b) = limk→∞ gna

k
(b) for all b ∈ R. Now,

to each n ∈ N, we assign the following two sets of reals

An = {a : n = nak for some k} and Bn = {b : gn(b) = 1}.
Then E =

⋂
m

⋃
n≥mAn×Bn and so E belongs to the σ-field of subsets

of R2 generated by rectangles. �

3. Corson Compacta

In this section we consider embeddings of function spaces over Corson
compacta. Recall that these are the compact subspaces of the Σ-powers
{x ∈ [0, 1]Γ : |{γ ∈ Γ : x(γ) 6= 0}| ≤ ℵ0}. Of course we will need to
restrict their weights not to exceed the continuum. Let us first examine
isometric embeddings into `∞/c0.

3.1 Theorem. Suppose `∞/c0 contains an isometric copy of every
function space C(K) over a Corson compactum K of weight at most
continuum. Then every subset of R2 belongs to the σ-field generated by
rectangles.

Proof. We start first with the assumption that there is a well ordering
≺ of R which as a subset of R2 does not belong to the σ-field generated
by rectangles. Let < denote the usual ordering of R. Let K be the
collection of all subsets of R on which the two orderings < and ≺
agree. Then K with the topology inherited from the Cantor cube 2R

when naturally identified with the power-set of R is a Corson compact
space. We shall show that C(K) is not isometric to a subspace of
`∞/c0. Suppose that there is a linear operator T : C(K)→ `∞/c0 such
that ‖ T ‖= 1. For a ∈ R, let 1a : K → {0, 1} be defined by

1a(A) = 1 iff a ∈ A.
4Recall that p is the minimal cardinality of a family H of infinite subsets of H

such that every finite subfamily of H has infinite intersection but there is no single
infinite subset b of N such that b \ a is finite for all a ∈ H.
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Clearly 1a ∈ C(K) for all a ∈ R. Let xa = T (1a). Then ‖ xa ‖= 1 for
all a ∈ R. Moreover, for two different elements a and b of R, we have
that

‖ xa + xb ‖> 1 iff ‖ 1a + 1b ‖∞> 1 iff {a, b} ∈ K.
Since {a, b} ∈ K holds if and only if the two orderings < and ≺ agree on
{a, b} and since clearly < belongs to the σ-field generated by rectangles,
we conclude that ≺ belongs to that field as well, a contradiction.

To prove the general result about Corson compacta, we may assume
that there is a well-ordering ≺ of R which belongs to the σ-field gen-
erated by rectangles. Fix a subset E of R that does not belong to the
σ-field of subsets of R generated by rectangles. We may assume that
a < b for all (a, b) ∈ E. Since ≺ is in the σ-field generated by rectangles
one of the sets E∩ ≺ of E\ ≺ is not in the σ-field. By symmetry, we
may assume that E0 = E∩ ≺ is not in the σ-field. Let K0 be the
collection of all subsets A of R such that (a, b) ∈ E0 for all a < b in A.
Then being a closed subspace of the compactum K considered above
K0 is also a Corson compact space. If C(K0) is isometric to a sub-
space of `∞/c0 then the argument above would give us a description
for a < b of the membership of (a, b) in E0 in terms of the condition
‖ xa + xb ‖> 1. So, in particular E0 would belong to the σ-field of
subsets of R2 generated by rectangles. �

3.2 Corollary. Suppose `∞/c0 contains an isometric copy of every
function space C(K) over a Corson compactum K of weight at most
continuum. Then 2θ = c for every infinite θ < c such that cf(2θ) ≤ c.

Let us now examine similar result about isomorphic rather than iso-
metric embedding function spaces over Corson compacta into `∞/c0.
As before, for a binary relation E on R and an integer k > 1, we set

E[k] = {(a1, ..., ak) ∈ Rk : ai 6= aj and (ai, aj) ∈ E for all i < j}.
Let Ec denote the complementary relation, i.e., Ec = R2 \ E.
3.3 Theorem. Suppose that `∞/c0 contains an isomorphic copy of ev-
ery function space C(K) over a Corson compactum K of weight at
most continuum. Then for every binary relation E on R and for all
but finitely many positive integers k, the sets E[k] and (Ec)[k] are sepa-
rated by a member of the σ-field of subsets of Rk generated by k-cubes.

Proof. As in the case of isometric embeddings, we fix a well-ordering
≺ of the continuum and consider first the case of the relation

E = {(a, b) ∈ R2 : a < b and a ≺ b}.
As above, let K be the Corson compactum of all subsets of R on which
the two orderings < and ≺ agree. Let T : C(K) → `∞/c0 be an
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isomorphic embedding and fix an integer k >‖ T ‖‖ T−1 ‖ . As before
for a ∈ R we let 1a be the corresponding indicator function on K and
xa = T (1a) be the corresponding member of `∞/c0.

Fix a k-sequence a1 < ... < ak of reals. Then (a1, ..., ak) ∈ E[k]

implies ‖ 1a1 + ...+ 1ak
‖∞≥ k and so as before

‖ xa1 + ...+ xak
‖≥ k/ ‖ T−1 ‖> ‖ T ‖ .

On the other hand, (a1, ..., ak) ∈ (Ec)[k] implies ‖ 1a1 + ...+ 1ak
‖∞= 1

and so ‖ xa1 + ... + xak
‖≤‖ T ‖ . It follows that we can separate

E[k] from (Ec)[k] by a member of the σ-field of subsets of Rk generated
by k-cubes. To get the same conclusion about an arbitrary irreflexive
binary relation E0 on R we proceed as above and note that we may
assume without loss of generality that it is included in the relation
E =< ∩ ≺ and consider the corresponding Corson compactum K0

getting the desired conclusion. �

4. Embedding C([0, ω2]) into `∞/c0

Recall that by Parovichenko’s result [5], for every ordinal γ < ω2, the
function space C([0, γ]) isometrically embeds into `∞/c0. In hindsight,
Kunen [4] was the first to show that this may not hold for the larger
function space C([0, ω2]), at least if one is not willing to go beyond the
usual axioms of set theory. In [2] (see also [3]), arguing along similar
lines, Kunen’s result has been extended to cover also the isomorphic
rather than isometric embeddings of C([0, ω2]) into `∞/c0. It turns out
that working as above the embeddability of C([0, ω2]) into `∞/c0 can
also be connected with the separation properties of the σ-fields R(ωk2).

4.1 Theorem. If the space `∞/c0 contains an isometric copy of the
space C([0, ω2]) then the ordering of ω2 belongs to the σ-field of subsets
of ω2 × ω2 generated by rectangles.

Proof. Fix a linear operator T : C([0, ω2]) → `∞/c0 of norm 1. For
α < ω2 let 1[0,α] be the characteristic function of the interval [0, α] and
let yα = T (1[α,ω2]) and xα = yα+1 − yα. Then for α, β < ω2, we have
that α < β if and only if ‖ xα+yβ ‖> 0, and so the usual ordering of ω2

belongs to the σ-field of subsets of ω2×ω2 generated by rectangles. �

It is easily seen that having the ordering of ω2 in the σ-field of subsets
of ω2 generated by rectangles does not imply that every other subset
of ω2 × ω2 is in the same σ-field. This could be shown by forcing
an isometric embedding of C([0, ω2]) into `∞/c0 while arranging the
cardinal inequalities 2θ > c ≥ cf(θ) for θ = ω2. In fact, with little extra
work, one can show that the same forcing extension has a function
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space C(K) over a first countable compactum K which does not even
isomorphically embed into `∞/c0.

To state a similar result for isomorphic rather than isometric embed-
ding, for a permutation σ : {1, ..., k} → {1, ..., k}, we let

<[σ]= {(α1, ..., αk) ∈ ωk2 : αi < αj iff σ(i) < σ(j)}.
For each positive integer k, we define also a particular permutation
ρk : {1, ..., k} → {1, ..., k} such that ρk(2j) > ρk(2j+ 2) > ρk(2i+ 1) >
ρk(2i− 1) for all positive integers i and j for which these numbers are
smaller or equal than k.

4.2 Theorem. Suppose that k >‖ T ‖‖ T−1 ‖ for some linear operator
T : C([0, ω2]) → `∞/c0. Then <[id2k−1] and <[ρ2k−1] can be separated by
a set belonging to the σ-field of subsets of ω2k−1

2 generated by (2k− 1)-
products A1 × · · · × A2k−1.

Proof. For α < ω2, we let zα = T (1(α,ω2]). Then α1 < ... < α2k−1 implies
that ‖ (zα1−zα2)+(zα3−zα2)+...+zα2k−1

‖≤‖ T ‖ . On the other hand,

(α1, ..., α2k−1) ∈<[ρ2k−1] implies ‖ (zα1−zα2)+(zα3−zα2)+...+zα2k−1
‖≥

k/ ‖ T−1 ‖>‖ T ‖ . This gives us the conclusion of Theorem 4.2. �
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