- (1) (a) Let V be a finite dimensional vector space over C and A: V → V be a linear map. Let V_R be the same space V viewed as a vector space over R and A_R = A: V_R → V_R.
 Prove that tr(A_R) = 2Re(tr(A))
 - (b) Let *G* be a compact Lie group. For any real representation of *G* of a real vector space *U* define the real character by

$$\chi_U^{\mathbb{R}}(g) = Tr(l_g))$$

Suppose $U_1 \in Irr(G, \mathbb{R})_{\mathbb{R}}$ and $U_2 \in Irr(G, \mathbb{R})_{\mathbb{H}}$. Prove that

$$\int_{G} \chi_{U_1}^{\mathbb{R}}(g) \chi_{U_2}^{\mathbb{R}}(g) dg = 0$$

(2) Define a two dimensional complex representation of $\mathfrak{so}(3)$ as follows

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \mapsto \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \mapsto \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mapsto \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

- (a) Verify that this actually defines a Lie algebra representation.
- (b) Prove that this Lie algebra representation does not come from a Lie group representation of SO(3) on \mathbb{C}^2 .

Hint: If a Lie algebra representation Π : $\mathfrak{g} \to End(V)$ of $\mathfrak{g} = T_eG$ comes from a Lie group representation of G on V and exp(X) = e for some $X \in \mathfrak{g}$ then $e^{\Pi(X)}$ must be equal to Id.