
(1) (a) Let V be a finite dimensional vector space over C and A : V Ñ V be a
linear map. Let VR be the same space V viewed as a vector space over
R and AR � A : VR Ñ VR.
Prove that trpARq � 2ReptrpAqq

(b) Let G be a compact Lie group. For any real representation of G of a
real vector space U define the real character by

χRUpgq � Trplgqq

Suppose U1 P IrrpG,RqR and U2 P IrrpG,RqH.
Prove that
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(2) Define a two dimensional complex representation of sop3q as follows
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(a) Verify that this actually defines a Lie algebra representation.
(b) Prove that this Lie algebra representation does not come from a Lie

group representation of SOp3q on C2.
Hint: If a Lie algebra representation Π : g Ñ EndpVq of g � TeG
comes from a Lie group representation of G on V and exppXq � e for
some X P g then eΠpXq must be equal to Id.
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