(1) (a) Let $u_1, \ldots, u_{n-1} \in \mathbb{R}^n$. Let A be an orthogonal $n \times n$ matrix with det A > 0. Prove that $A(u_1) \times \ldots A(u_{n-1}) = A(u_1 \times \ldots \times u_{n-1})$.

Hint: let $w \in \mathbb{R}^n$ be any vector. Show that $\langle u_1, \times \ldots \times u_{n-1}, w \rangle = \langle A(u_1), \times \ldots \times A(u_{n-1}), A(w) \rangle$. On the other hand, observe that since A is orthogonal,

 $\langle u_1, \times \ldots \times u_{n-1}, w \rangle = \langle A(u_1, \times \ldots \times u_{n-1}), A(w) \rangle$

- (b) Let $u_1 = (1, 2, 0, 0), u_2 = (0, 1, 1, 0), u_3 = (0, 1, -1, 1)$. Compute $vol_3(P(u_1, u_2, u_3) and ||u_1 \times u_2 \times u_3||$ and verify that they are equal.
- (c) Let $u_1, \ldots, u_{n-1} \in \mathbb{R}^n$. Prove that $||u_1 \times \ldots \times u_{n-1}|| = \operatorname{vol}_{n-1}(\operatorname{P}(u_1, \ldots, u_{n-1}))$. *Hint:* First, use part a) to reduce the situation to the case when $u_1, \ldots, u_{n-1} \in \mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$. Then show that both sides of the formula change in the same way under elementary row operations on u_1, \ldots, u_{n-1} . use it to further reduce the situation to the case $u_1 = e_1, \ldots, u_{n-1} = e_{n-1}$.
- (2) Let $U \subset \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}$ be C^1 where $n \geq 1$. Consider the graph of f with the parametrization $\alpha(x_1, \ldots, x_n) = (x_1, \ldots, x_n, f(x))$.

Prove that $\operatorname{vol}_{n}(\alpha) = \int_{U}^{\operatorname{ext}} \sqrt{1 + (\frac{\partial f}{\partial x_{1}})^{2} + \ldots + (\frac{\partial f}{\partial x_{n}})^{2}}$ (3) Let $f: (-1, 1) \to \mathbb{R}$ be given by $f(t) = \sqrt{|t|}$.

Prove that the graph of f is not a manifold.