(1) Give an example of a function $f \colon \mathbb{R} \to \mathbb{R}$ such that f is not C^1 but the graph of f is a C^1 manifold in \mathbb{R}^2 .

Hint: Look for a monotone function y = f(x) such that it's not C^1 but its inverse x = g(y) is C^1 .

(2) Let $S^1 \subset \mathbb{R}^2$ be a unit circle. Let $T^2 = S^1 \times S^1 \subset \mathbb{R}^4$. Show that T^2 can be covered by **two** coordinate charts. *Hint:* Look at a cylinder and an annulus.

Hunt: Look at a cynnder and an annulus.

- (3) Show that a subset $M \subset \mathbb{R}^n$ is an *n*-manifold without a boundary if and only if M is open.
- (4) Prove that the union of xy plane and xz plane in \mathbb{R}^3 is not a C^1 -manifold.

Hint: Use that a 2-manifold is locally given as a level set $\{f = c\}$ for some C^1 function f and a regular value c of f.

(5) Let $M^k \subset \mathbb{R}^n$ be a C^r manifold without boundary. let $g: M \to \mathbb{R}$ be a function.

Prove that g is C^r if and only if for any $p \in M$ there exists a parametrization $f: V \to U$ where $V \subset \mathbb{R}^k$ is open and $U \subset M$ is open satisfying the definition of a manifold such that $g \circ f$ is C^r .

(6) Let n > 1 and Let M be the set of $n \times n$ matrices A with det(A) = 1, tr(A) = 0 considered as a subset of the space of all $n \times n$ matrices which is identified with \mathbb{R}^{n^2} . Prove that M is a manifold and compute its dimension.