- (1) Let V be a n-dimensional vector space. Let $T \in \mathcal{L}^{k}(V), S \in \mathcal{L}^{l}(V)$. Prove that $Alt(T \otimes S) = Alt(Alt(T) \otimes Alt(S))$.
- (2) Let V be a n-dimensional vector space and let $\langle \cdot, \cdot \rangle$ be a scalar product on V and let μ be an orientation on V.

Prove that there exists a unique alternating n-tensor $\omega \in \mathcal{A}^n(V)$ such that $\omega(e_1, \ldots, e_n) = 1$ for any positively oriented orthonormal basis e_1, \ldots, e_n of V.

basis e_1, \ldots, e_n of V. (3) Let Let $M \subset \mathbb{R}^3$ be given by $\{x^2 + y^2 - 5z^2 = 0\} \cap \{2x - y + z = 1\}$. Prove that M is a manifold and find T_pM for p = (1, 2, 1).