- (1) Let $f: R^3 \to R^3$ be given by $f(x,y,z) = (y\sin(z), xe^z, 1+y^2)$. Let $\omega = zdx \wedge dy$. Compute $df^*(\omega)$ and $f^*(d\omega)$ and verify that they are equal .
- (2) Prove that every closed C^{∞} 1-form on \mathbb{R}^2 is exact. Hint: Let $\omega = P(x,y)dx + Q(x,y)dy$ with $d\omega = 0$. We want to find a function F(x,y) such that $\omega = dF$, i.e. $P = \frac{\partial F}{\partial x}$ and $Q = \frac{\partial F}{\partial y}$. Define $F(x,y) = \int_0^x P(x,0)dx + \int_0^y Q(x,y)dy$. Use that $d\omega = 0$ to show that $dF = \omega$.
- (3) A subset $X \subset \mathbb{R}^n$ is called path connected if for any points $p,q \in X$ there exists a continuous map $\gamma \colon [0,1] \to X$ such that $\gamma(0) = p, \gamma(1) = q$. Let $U \colon \mathbb{R}^n$ be an open path connected set and $f \colon U \to V$ be a C^1 diffeomorphism onto an open set $V \subset \mathbb{R}^n$.

Prove that $det[df_x] > 0$ for all $x \in U$ or $det[df_x] < 0$ for all $x \in U$.

- (4) Let $\sigma \colon (0,1)^2 \to R^3$ be given by $\sigma(x,y) = (xy,2x+y,y^2)$. Let ω be a 2-form on R^3 given by $x_1 dx_2 \wedge dx_3 + x_2^2 dx_1 \wedge dx_3$. Find $\int_{\sigma} \omega$.
- (5) Let $U \subset \mathbb{R}_n$ be open and $w \subset \Omega^1(U)$ be exact. Let $p, q \in U$ be fixed and let $\gamma \colon [0,1] \to U$ be C^1 such that $\gamma(0) = p, \gamma(1) = q$. Prove that $\int_{\gamma} \omega$ is independent of γ .
- (6) Let $f: \mathbb{R}^k \to \mathbb{R}^n$ be C^{∞} . Let $x = (x_1, \ldots, x_k)$ denote the general point of \mathbb{R}^k and $y = (y_1, \ldots, y_n)$ denote the general point of \mathbb{R}^n . Let $\omega = \phi(y)dy_I$ where $i = (i_1 < i_2 < \ldots < i_k)$. Let $f_I(x) = (f_{i_1}(x), \ldots, f_{i_k}(x))$.

Prove that $f^*(\omega) = \phi(f(x)) \det[df_I(x)] dx_1 \wedge dx_2 \wedge \ldots \wedge dx_k$.

Extra Credit: John Nash's Problem. Is it true that every closed 1-form on $R^3 \setminus \{(0,0,0)\}$ is exact?