(1) Let $V \subset \mathbb{R}^n$ be a vector subspace of dimension n-1. Let $N \in \mathbb{R}^n$ be a nonzero vector normal to V. Let v_1, \ldots, v_{n-1} be a basis of V. We'll say that (v_1, \ldots, v_{n-1}) is a positive basis with respect to the orientation of V induced by N if $\det(N, v_1, \ldots, v_{n-1}) > 0$.

Prove that this defines a well-defined orientation of V. in other words, suppose (u_1, \ldots, u_{n-1}) be another basis of V.

Prove that (u_1, \ldots, u_{n-1}) and (v_1, \ldots, v_{n-1}) have the same orientation if and only if $det(N, v_1, \ldots, v_{n-1})$ and $det(N, u_1, \ldots, u_{n-1})$ have the same sign.

(2) Let $M \subset \mathbb{R}^n$ be orientable and let μ be the orientation induced by a positive atlas f_{α} .

In other words for any point $p \in M$ and a positive parametrization $f_{\alpha}: V_{\alpha} \to U_{\alpha}$ such that $p = f_{\alpha}(q_{\alpha})$ we choose the orientation of T_pM by declaring the basis of T_pM given by $df_{q_{\alpha}}(e_1), \ldots, df_{q_{\alpha}}(e_k)$ to be positive.

Prove that μ is continuous. In other words, suppose $U \subset M$ is an open set and $X_1(x), \ldots, X_k(x)$ be continuous vector fileds on Usuch that $(X_1(x), \ldots, X_k(x))$ is a basis of $T_x M$. Define h(x) = +1if $(X_1(x), \ldots, X_k(x))$ is a positive basis of $T_x(M)$ with respect to μ and h(x) = -1 if $(X_1(x), \ldots, X_k(x))$ is a negative basis of $T_x(M)$ with respect to μ .

Hint: Let $f_{\alpha}: V_{\alpha} \to U_{\alpha}$ be a positive parametrization. look at the vector fields Y_1, \ldots, Y_k on U_{α} given by $Y_i(f_{\alpha}(x)) = df_{\alpha}(x)(e_i)$. Then $Y_1(p), \ldots, Y_k(p)$ is a positive basis of T_pM for any $p \in U_{\alpha}$ by definition of the orientation μ . Then for any $p \in U \cap U_{\alpha}$ we have that $(X_1(p), \ldots, X_k(p))$ and $(Y_1(p), \ldots, Y_k(p))$ are related by a $k \times k$ matrix A(p) depending continuously on p. Use that det A(p)is continuous in p.

(3) Let $M = \{x^2 + y^2 + z^2 \leq 1\}$ in \mathbb{R}^3 with the orientation coming from the canonical orientation on \mathbb{R}^3 . Consider the induced orientation on ∂M and find a positive basis of $T_p \partial M$ at p = (1, 0, 0).

Further, let $N = S_+^2 = \{(x, y, z) | \text{ such that } x^2 + y^2 + z^2 = 1$ and $z \ge 0 \}$. Consider the orientation on N coinciding with the orientation on $S^2 = \partial M$. Consider ∂N with the induced orientation from N. Find a positive basis of $T_p \partial N$ for p = (1, 0, 0).

- (4) Let $M_1 \subset \mathbb{R}^{n_1}, M_2 \subset \mathbb{R}^{n-2}$ be orientable manifolds without boundary. Prove that $M_1 \times M_2 \subset \mathbb{R}^{n_1+n_2}$ is orientable.
- (5) Let $M^k \subset \mathbb{R}^n$ be a C^{∞} manifold with boundary. Prove that for any $p \in \partial M$ there exists an open set $W \subset \partial M$ we can construct a C^{∞} unit vector filed N on U tangent to ∂M such that $N(x) \perp T_x \partial M$ for any $x \in W$.

Hint: Take a local parametrization $f: V \to U$ where $V \subset H^k$, $U \subset M$ and look at the vector fields $df_x(e_1), \ldots, df_x(e_k)$. Apply Gramm-Shmidt to those vector fields.

- (6) Let M = {x²/9 + y²/4 + z² ≤ 3} in R³. Consider the induced orientation on ∂M and find a positive basis of T_p∂M at p = (3, -2, 1).
 (7) Let M = S² = {x² + y² + z² = 1} ⊂ ℝ³ with the orientation induced from the ball {x² + y² + z² ≤ 1}. Let ω = zdx ∧ dy. Compute ∫_Mω.
 (8) Let M be the cylinder {(x, y, z)| such that x²+y² = 1 and 0 ≤ z ≤ 1} in R³. Let ω = zdx. Fix an orientation on M such that the s
- in \mathbb{R}^3 . Let $\omega = zdx$. Fix an orientation on M such that the $e_2 =$ $(0, 1, 0), e_3 = (0, 0, 1)$ give a positive basis of $T_p M$ for p = (1, 0, 0). Compute $\int_M d\omega$ and $\int_{\partial M} \omega$ and verify that they are equal.

Extra Credit: John Nash's Problem. Is it true that every closed 1-form on $\mathbb{R}^3 \setminus \{(0,0,0)\}$ is exact?

 $\mathbf{2}$