- (1) Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be open. Show that $U \times V \subset \mathbb{R}^{n+m}$ is open.
- (2) Let $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ be closed. Show that $A \times B \subset \mathbb{R}^{n+m}$ is closed.
- (3) Let X be a metric space. let $A \subset X$ be a subset of X. Prove that Lim(A) is closed.
- (4) Let X be a metric space. let $A \subset X$ be a subset of X.
 - (a) Show that if $A \subset C \subset X$ and C is closed then $Cl(A) \subset C$.
 - (b) Show that Cl(A) is equal to the intersection of all closed subsets of X containing A.
- (5) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous map. Is it true that image of every closed set under f is closed? prove or give a counterexample.
- (6) Using only the definition of continuity show that if $f: X \to \mathbb{R}^n$ and $g: X \to \mathbb{R}^m$ are continuous then $(f,g): X \to \mathbb{R}^{n+m}$ is continuous.
- (7) Find br(A), Lim(A) and Cl(A) for the following sets.
 - (a) $A = \{0 < x^2 + y^2 \le 1\} \subset \mathbb{R}^2.$
 - (b) $A = (0, 1) \times \{0\} \subset \mathbb{R}^2$.
 - (c) $A = \{(x, y) \in \mathbb{R}^2 | \text{ such that } x > 0, y < \sin(1/x) \} \subset \mathbb{R}^2.$
- (8) Let $f: X \to Y$ and $g: Y \to Z$ where X, Y, Z are metric spaces. Suppose f is continuous at p and g is continuous at f(p). Using only the definition prove that $g \circ f$ is continuous at p.
- (9) Let $f, g: X \to \mathbb{R}$ are continuous at p. Using only the definition prove that $f \cdot g: X \to \mathbb{R}$ is continuous at p.

Extra Credit Problem (to be written up and submitted separately)

Give an example of a nonempty set $A \subset \mathbb{R}$ such that A = br(A) = Lim(A) = Cl(A).