(1) Give an ϵ - δ proof of the following statement:

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}$ satisfy

 $\lim_{x \to a} f(x) = 0 \text{ and } g(x) \text{ is bounded on } B(a, \delta) \text{ for some } \delta > 0$

then $\lim_{x\to a} g(x)f(x) = 0$

- (2) Let $A = \mathbb{Q} \cap [0, 1] \subset \mathbb{R}$. Give an example of an open cover of A which has no finite subcover.
- (3) Give an example of a metric space X and a subset $A \subset X$ such that A is closed and bounded but not compact.
- (4) Let (X, d) be a metric space. Let $A \subset X$ be a subset. Prove that $A \subset X$ is compact if and only if $A \subset (A, d_A)$ is compact. Recall that d_A is the restriction of the metric d to A.
- (5) Let X be a metric space. Prove that the intersection of an arbitrary family of compact subsets of X is compact.
- (6) Let A = {0, 1, 1/2, 1/3, ..., 1/n, ...} ⊂ ℝ.
 Using only the definition of compactness prove that the A is compact.
- (7) Let $(X, d_X), (Y, d_Y)$ be metric spaces. define $d_{prod}: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by $d_{prod}((x_1, y_1), (x_2, y_2)) = \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}$.
 - (a) Prove that d_{prod} is a metric on $X \times Y$.
 - (b) verify that if (X, d_X) is \mathbb{R}^n with the standard metric and (Y, d_Y) is \mathbb{R}^m with the standard metric then $(X \times Y, d_{prod})$ is \mathbb{R}^{n+m} with the standard metric.
- (8) Let (X, d) be a metric space. Let $A \subset X$ be any subset. let $f: X \to \mathbb{R}$ be defined by $f(x) = \inf_{y \in A} d(x, y)$. We'll refer to f(x) as the distance from x to A and denote it by d(x, A).
 - (a) Prove that f satisfies $|f(x) f(y)| \le d(x, y)$ for any $x, y \in X$.
 - (b) Prove that f is continuous on X.
 - (c) Prove that $A \subset X$ is closed if an only if the following holds

$$d(x, A) = 0$$
 if and only if $x \in A$

(d) Let $A \subset \mathbb{R}^2$ be the graph of $y = x^2$ where $x \in \mathbb{R}$. Let $p \in \mathbb{R}^2$ be the point (0, 1).

Find d(p, A). Here d is the standard metric on \mathbb{R}^2 .

- (9) Which of the following sets are compact? provide an explanation.
 - (a) $\emptyset \subset \mathbb{R};$
 - (b) $\mathbb{Z} \subset \mathbb{R};$
 - (c) $\{(x, y) \in \mathbb{R}^2 | \text{ such that } 0 < x^2 + y^2 \le 1\}.$
 - (d) $\{(x,y) \in \mathbb{R}^2 | \text{ such that } x \ge 1, 0 \le y \le \frac{1}{x} \}.$
 - (e) $\{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + y^2 \le z \le 2x + 4y\}.$

Extra Credit Problem (to be written up and submitted separately)

A norm on a real vector space V is a function $|\cdot|\colon\,V\to\mathbb{R}$ satisfying the following conditions

- (1) $|v| \ge 0$ for any $v \in V$ and |v| = 0 if and only if v = 0.
- (2) $|\lambda v| = |\lambda| \cdot |v|$ for any $v \in V, \lambda \in \mathbb{R}$.
- (3) $|v_1 + v_2| \le |v_1| + |v_2|$ for any $v_1, v_2 \in V$. given a norm one can define a metric on V by the formula d(u, v) = |u v|.

Prove that any two norms on \mathbb{R}^n define the same open sets.

Hint: Use that the unit sphere in \mathbb{R}^n is compact and hence any continuous function on \mathbb{R}^n attains a maximum and a minimum on the unit sphere.