- (1) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = \sin(xyz) + e^{2x+y(z-1)}$. show
- (1) Let $f: R^1 \to R$ be given by $f(x, y, z) = \sin(xyz) + e^{-ixx}$ show that the level set $\{f = 1\}$ can be solved as x = x(y, z) near (0, 0, 0)and compute $\frac{\partial x}{\partial y}(0, 0)$ and $\frac{\partial x}{\partial z}(0, 0)$ (2) let $f: R^3 \to R^2$ be given by $f_1(x, y, z) = \sin(x + y) x + 2z$, $f_2(x, y, z) = y + \sin z$ Show that the level set $\{f_1 = 0, f_2 = 0\}$ can be solved near (0, 0, 0) as y = y(x), z = z(x) and compute $\frac{\partial y}{\partial x}(0)$ and $\frac{\partial z}{\partial r}(0)$

Extra Credit: Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$ be \mathbb{C}^1 where m < n. prove that f can not be 1-1 on U.

Hint: Use that if f is 1-1 then one of the partial derivatives of f is not identically zero.