Replacement Lemma: Let $V$ be a vector space, and $S$ a subset generating $V$, i.e. $\operatorname{span}(S)=V$. Suppose $v_1,\ldots,v_m\in V$ are linearly independent vectors. Then there exist distinct vectors $u_1,\ldots,u_m\in S$ such that the subset $ (S\backslash \{u_1,\ldots,u_m\})\cup \{v_1,\ldots,v_m\}$ spans V.